题目内容

【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.
(1)当a=90时,求纸盒侧面积的最大值;
(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.

【答案】
(1)解:因为矩形纸板ABCD的面积为3600,故当a=90时,b=40,

从而包装盒子的侧面积S=2×x(90﹣2x)+2×x(40﹣2x)=﹣8x2+260x,x∈(0,20)

因为S=﹣8x2+260x=﹣8(x﹣16.25)2+2112.5,

故当x=16.25时,侧面积最大,最大值为2112.5平方厘米


(2)解:包装盒子的体积V=(a﹣2x)(b﹣2x)x=x[ab﹣2(a+b)x+4x2],x∈(0, ),b≤60.

V=x[ab﹣2(a+b)x+4x2]≤x(ab﹣4 x+4x2)=x(3600﹣240x+4x)

=4x3﹣240x2+3600x.

当且仅当a=b=60时等号成立.

设f(x)=4x3﹣240x2+3600x,x∈(0,30).则f′(x)=12(x﹣10)(x﹣30).

于是当0<x<10时,f′(x)>0,所以f(x)在(0,10)上单调递增;

当10<x<30时,f′(x)<0,所以f(x)在(10,30)上单调递减.

因此当x=10时,f(x)有最大值f(10)=16000,此时a=b=60,x=10.

答:当a=b=60,x=10时纸盒的体积最大,最大值为16000立方厘米


【解析】(1)当a=90时,b=40,求出侧面积,利用配方法求纸盒侧面积的最大值;(2)表示出体积,利用基本不等式,导数知识,即可确定a,b,x的值,使得纸盒的体积最大,并求出最大值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网