题目内容
【题目】设函数,其中a为常数.
Ⅰ当,求a的值;
Ⅱ当时,关于x的不等式恒成立,求a的取值范围.
【答案】(1)a=﹣(2)[﹣2,+∞)
【解析】
(1)直接计算出f(1)和f(2),根据条件解方程即可求得a;
(2)采用分离参数法,分离变量a,再根据函数的单调性求最值,得出a的取值范围.
(1)∵f(x)=log2(1+a2x+4x),
∴f(-1)=log2(1++),f(2)=log2(1+4a+16),
由于,
即log2(4a+17)=log2(+)+4,
解得,a=﹣;
(2)因为f(x)≥x﹣1恒成立,
所以,log2(1+a2x+4x)≥x﹣1,
即,1+a2x+4x≥2x﹣1,
分离参数a得,a≥﹣(2x+2﹣x),
∵x≥1,∴(2x+2﹣x)min=,此时x=1,
所以,a≥﹣=﹣2,
即实数a的取值范围为[﹣2,+∞).
练习册系列答案
相关题目
【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务时间的统计数据如下:
超过1小时 | 不超过1小时 | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2