题目内容
【题目】若 表示从左到右依次排列的9盏灯,现制定开灯与关灯的规则如下:
(1)对一盏灯进行开灯或关灯一次叫做一次操作;
(2)灯在任何情况下都可以进行一次操作;对任意的,要求灯的左边有且只有灯是开灯状态时才可以对灯进行一次操作.如果所有灯都处于开灯状态,那么要把灯关闭最少需要_____次操作;如果除灯外,其余8盏灯都处于开灯状态,那么要使所有灯都开着最少需要_____次操作.
【答案】3 21
【解析】
(1)利用列举法求得把灯关闭最少需要的操作次数.(2)先用列举法求得关闭前个灯最少需要的操作次数,然后乘以再加上,得到使所有灯都开着最少需要的操作次数.
(1)如果所有灯都处于开灯状态,那么要把灯关闭最少需要的操作如下,设为开灯,0为关灯:初始状态,操作如下,共次.
(2)①关闭前个灯最少需要的操作如下,设为开灯,0为关灯:初始状态,操作如下:,共次.
②此时前盏灯的状态如下:,操作次,变为,打开.
③将步骤①倒过来做一遍,打开前个灯,共次操作.
综上所述,如果除灯外,其余8盏灯都处于开灯状态,那么要使所有灯都开着最少需要次操作
故答案为:(1). 3 (2). 21
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 1 | 3 | 4 | 7 |
表中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为,.
【题目】为研究女高中生身高与体重之间的关系,一调查机构从某中学中随机选取8名女高中生,其身高和体重数据如下表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 164 | 160 | 158 | 172 | 162 | 164 | 174 | 166 |
体重 | 60 | 46 | 43 | 48 | 48 | 50 | 61 | 52 |
该调查机构绘制出该组数据的散点图后分析发现,女高中生的身高与体重之间有较强的线性相关关系.
(1)调查员甲计算得出该组数据的线性回归方程为,请你据此预报一名身高为的女高中生的体重;
(2)调查员乙仔细观察散点图发现,这8名同学中,编号为1和4的两名同学对应的点与其他同学对应的点偏差太大,于是提出这样的数据应剔除,请你按照这名调查人员的想法重新计算线性回归话中,并据此预报一名身高为的女高中生的体重;
(3)请你分析一下,甲和乙谁的模型得到的预测值更可靠?说明理由.
附:对于一组数据,其回归方程的斜率和截距的最小二乘法估计分别为:.