题目内容
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<,x∈R)的图象的一部分如图所示.
(1)求函数f(x)的解析式.
(2)当x∈[-6,-]时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值.
(1)求函数f(x)的解析式.
(2)当x∈[-6,-]时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值.
(1) f(x)=2sin(x+)
(2) 当x=-,即x=-时,y=f(x)+f(x+2)取得最大值;
当x=-π,即x=-4时,y=f(x)+f(x+2)取得最小值-2.
(2) 当x=-,即x=-时,y=f(x)+f(x+2)取得最大值;
当x=-π,即x=-4时,y=f(x)+f(x+2)取得最小值-2.
(1)由图象知A=2,T=8,
∵T==8,∴ω=.
又图象经过点(-1,0),∴2sin(-+φ)=0,
∴φ=kπ+,k∈Z,∵|φ|<,
∴φ=.∴f(x)=2sin(x+).
(2)y=f(x)+f(x+2)
=2sin(x+)+2sin(x++)
=2cosx.
∵x∈[-6,-],∴-≤x≤-.
∴当x=-,即x=-时,y=f(x)+f(x+2)取得最大值;
当x=-π,即x=-4时,y=f(x)+f(x+2)取得最小值-2.
∵T==8,∴ω=.
又图象经过点(-1,0),∴2sin(-+φ)=0,
∴φ=kπ+,k∈Z,∵|φ|<,
∴φ=.∴f(x)=2sin(x+).
(2)y=f(x)+f(x+2)
=2sin(x+)+2sin(x++)
=2cosx.
∵x∈[-6,-],∴-≤x≤-.
∴当x=-,即x=-时,y=f(x)+f(x+2)取得最大值;
当x=-π,即x=-4时,y=f(x)+f(x+2)取得最小值-2.
练习册系列答案
相关题目