题目内容
【题目】已知椭圆C的两个焦点是F1(﹣2,0),F2(2,0),且椭圆C经过点A(0, ).
(1)求椭圆C的标准方程;
(2)若过椭圆C的左焦点F1(﹣2,0)且斜率为1的直线l与椭圆C交于P、Q两点,求线段PQ的长(提示:|PQ|= |x1﹣x2|).
【答案】
(1)解:由题意可知椭圆焦点在x轴上,设椭圆方程为 (a>b>0),
由题意可知 ,∴a=3,b= .
∴椭圆的标准方程为 =1
(2)解:直线l的方程为y=x+2,
联立方程组 ,得14x2+36x﹣9=0,
设P(x1,y1),Q(x2,y2),则x1+x2=﹣ ,x1x2=﹣ ,
∴|PQ|= |x1﹣x2|= = =
【解析】(1)利用待定系数法求出椭圆方程;(2)联立方程组,利用根与系数的关系和弦长公式计算弦长.
【题目】下面(A)(B)(C)(D)为四个平面图形:
(1)数出每个平面图形的交点数、边数、区域数,并将下表补充完整:
交点数 | 边数 | 区域数 | |
(A) | 4 | 5 | 2 |
(B) | 5 | 8 | |
(C) | 12 | 5 | |
(D) | 15 |
(2)观察表格,若记一个平面图形的交点数、边数、区域数分别为E、F、G,试猜想E、F、G之间的数量关系(不要求证明).
【题目】“世界睡眠日”定在每年的3月21日,某网站于2017年3月14日到3月20日持续一周网上调查公众日平均睡眠的时间(单位:小时),共有2 000人参加调查,现将数据整理分组后如下表所示.
序号(i) | 分组睡眠时间 | 组中值(mi) | 频数(人数) | 频率(fi) |
1 | [4,5) | 4.5 | 80 | |
2 | [5,6) | 5.5 | 520 | 0.26 |
3 | [6,7) | 6.5 | 600 | 0.30 |
4 | [7,8) | 7.5 | ||
5 | [8,9) | 8.5 | 200 | 0.10 |
6 | [9,10] | 9.5 | 40 | 0.02 |
(1)求出表中空白处的数据,并将表格补充完整.
(2)画出频率分布直方图.
(3)为了对数据进行分析,采用了计算机辅助计算.程序框图如图所示,求输出的S值,并说明S的统计意义.