ÌâÄ¿ÄÚÈÝ
4£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×ãf£¨x+1£©=f£¨x£©£¬µ±x¡Ê[0£¬1]ʱ£¬f£¨x£©=$\left\{\begin{array}{l}{2x£¬0¡Üx¡Ü\frac{1}{2}}\\{2-2x£¬\frac{1}{2}£¼x¡Ü1}\end{array}\right.$£¬¶¨Òåf1£¨x£©=f£¨x£©£¬f2£¨x£©=f£¨2x£©£¬¡£¬fn£¨x£©=f£¨2n-1x£©£¬ÈôÖ±Ïßy=k£¨x+1£©ÓëÇúÏßy=f4£¨x£©ÔÚx¡Ê[0£¬1]ÉÏÇ¡ÓÐ16¸ö½»µã£¬ÔòkµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©A£® | 0£¼k£¼$\frac{7}{15}$ | B£® | 0£¼k£¼$\frac{8}{15}$ | C£® | 0£¼k£¼$\frac{15}{31}$ | D£® | 0£¼k£¼$\frac{16}{31}$ |
·ÖÎö »³öº¯Êýy=f4£¨x£©ÔÚ[0£¬1]µÄͼÏó£¬×¢Òâ·Ö8¸öÇø¼ä£¬»³öÖ±Ïßy=k£¨x+1£©£¬Í¨¹ýÖ±ÏßÈÆ×Ŷ¨µã£¨-1£¬0£©Ðýת¹Û²ìÇ¡ÓÐ16¸ö½»µãµÄÇé¿ö£¬¼´¿ÉµÃµ½kµÄ·¶Î§£®
½â´ð ½â£º»³öº¯Êýy=f4£¨x£©ÔÚ[0£¬1]µÄͼÏó£¬
×¢Òâ·Ö8¸öÇø¼ä£º[0£¬$\frac{1}{8}$]£¬[$\frac{1}{8}$£¬$\frac{1}{4}$]£¬
[$\frac{1}{4}$£¬$\frac{3}{8}$]£¬[$\frac{3}{8}$£¬$\frac{1}{2}$]£¬[$\frac{1}{2}$£¬$\frac{5}{8}$]£¬[$\frac{5}{8}$£¬$\frac{3}{4}$]£¬
[$\frac{3}{4}$£¬$\frac{7}{8}$]£¬[$\frac{7}{8}$£¬1]£¬
»³öÖ±Ïßy=k£¨x+1£©£¬ÓÉͼÏó¿ÉµÃ£¬
µ±Ö±Ïß¾¹ýµã£¨$\frac{15}{16}$£¬1£©£¬Ôò£¨$\frac{15}{16}$+1£©k=1£¬
½âµÃk=$\frac{16}{31}$£¬
µ±0£¼k£¼$\frac{16}{31}$ʱ£¬Ö±Ïßy=k£¨x+1£©
ÓëÇúÏßy=f4£¨x£©ÔÚx¡Ê[0£¬1]ÉÏÇ¡ÓÐ16¸ö½»µã£®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éº¯ÊýºÍ·½³ÌµÄת»¯Ë¼Ï룬ͬʱ¿¼²éº¯ÊýµÄÖÜÆÚÐÔµÄÔËÓã¬ÔËÓÃÊýÐνáºÏµÄ˼Ïë·½·¨ÊǽâÌâµÄ¹Ø¼ü£®
A£® | £¨$\frac{3}{2}$£¬4£© | B£® | £¨$\frac{3}{2}$£¬+¡Þ£© | C£® | £¨4£¬+¡Þ£© | D£® | £¨0£¬$\frac{3}{2}$£© |
A£® | [-1£¬4] | B£® | [-$\frac{1}{2}$£¬4] | C£® | [4£¬+¡Þ£© | D£® | [-$\frac{1}{3}$£¬+¡Þ£© |