题目内容
18.若函数$f(x)={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2014}}{x^{2014}}(x∈R)$是奇函数,则a0+a2+a4+…+a2014=0.分析 由奇函数的性质得f(1)+f(-1)=a0+a2+a4+…+a2014=0.
解答 解:∵函数$f(x)={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2014}}{x^{2014}}(x∈R)$是奇函数,
∴f(-x)+f(x)=${a}_{0}-{a}_{1}x+{a}_{2}{x}^{2}+…+{a}_{2014}{x}^{2}$+${a}_{0}+{a}_{1}x+{a}_{2}{x}^{2}+…+{a}_{2014}{x}^{2014}$=0,
∴f(1)+f(-1)=a0+a2+a4+…+a2014=0.
故答案为:0.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
6.定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立; (2)当x∈(1,2]时,f(x)=(2-x)2;记函数g(x)=f(x)-k(x-1),若函数g(x)恰有两个零点,则实数k的取值范围是( )
A. | [1,2) | B. | [$\frac{4}{3}$,2] | C. | ($\frac{4}{3}$,2) | D. | [$\frac{4}{3}$,2) |
7.已知集合A={x|x2-2x<0},B={x-2<x≤1},则A∩B=( )
A. | {x|-2<x<1} | B. | {x|0<x<1} | C. | {x|1<x<2} | D. | {x|0<x≤1 |
3.已知函数f(x)=log${\;}_{\frac{1}{2}}$[x2-2(2a-1)x+8],a∈R,若f(x)在[a,+∞)上为减函数,则a的取值范围为( )
A. | (-∞,2] | B. | (-$\frac{4}{3}$,2] | C. | (-∞,1] | D. | (-$\frac{4}{3}$,1] |
8.已知函数f(x)=4x2-mx+1在(-∞,-2]上递减,在[-2,+∞)上递增,则f(1)=( )
A. | 19 | B. | 20 | C. | 21 | D. | 22 |