题目内容
【题目】已知全集U={1,2,3,4},集合A={1,2,x2}与B={1,4}是它的子集,
(1)求UB;
(2)若A∩B=B,求x的值;
(3)若A∪B=U,求x.
【答案】
(1)解:∵全集U={1,2,3,4},B={1,4},
∴UB={2,3}
(2)解:∵A={1,2,x2},B={1,4},且A∩B=B,
∴x2=4,
则x=±2
(3)解:∵A={1,2,x2},B={1,4},且A∪B=U,
∴x2=3,
则x=±
【解析】(1)根据全集U及B,求出B的补集即可;(2)根据A与B的交集为B,得到B为A的子集,求出x的值即可;(3)根据A与B的并集为U,求出x的值即可.
【考点精析】本题主要考查了集合的并集运算和集合的交集运算的相关知识点,需要掌握并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立;交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立才能正确解答此题.
【题目】某课题组对春晚参加“咻一咻”抢红包活动的同学进行调查,按照使用手机系统不同(安卓系统和IOS系统)分别随机抽取5名同学进行问卷调查,发现他们咻得红包总金额数如表所示:
手机系统 | 一 | 二 | 三 | 四 | 五 |
安卓系统(元) | 2 | 5 | 3 | 20 | 9 |
IOS系统(元) | 4 | 3 | 18 | 9 | 7 |
(1)如果认为“咻”得红包总金额超过6元为“咻得多”,否则为“咻得少”,请判断手机系统与咻得红包总金额的多少是否有关?
(2)要从5名使用安卓系统的同学中随机选出2名参加一项活动,以X表示选中的同学中咻得红包总金额超过6元的人数,求随机变量X的分布列及数学期望E(X).
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
独立性检验统计量 ,其中n=a+b+c+d.