题目内容
【题目】设函数f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.
(1)求M;
(2)当x∈M∩N时,证明:x2f(x)+x[f(x)]2≤ .
【答案】
(1)解:由f(x)=2|x﹣1|+x﹣1≤1 可得 ①,或 ②.
解①求得1≤x≤ ,解②求得 0≤x<1.
综上,原不等式的解集为[0, ].
(2)证明:
由g(x)=16x2﹣8x+1≤4,求得﹣ ≤x≤ ,
∴N=[﹣ , ],
∴M∩N=[0, ].
∵当x∈M∩N时,f(x)=1﹣x,
∴x2f(x)+x[f(x)]2=xf(x)[x+f(x)]= ﹣ ≤ ,
故要证的不等式成立.
【解析】(1)由所给的不等式可得 ①,或 ②,分别求得①、②的解集,再取并集,即得所求.(2)由g(x)≤4,求得N,可得M∩N=[0, ].当x∈M∩N时,f(x)=1﹣x,不等式的左边化为 ﹣ ,显然它小于或等于 ,要证的不等式得证.
【考点精析】掌握集合的交集运算是解答本题的根本,需要知道交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.
练习册系列答案
相关题目
【题目】为了调查某校高二同学是否需要学校提供学法指导,用简单随机抽样方法从该校高二年级调查了55位同学,结果如下:
男 | 女 | |
需要 | 20 | 10 |
不需要 | 10 | 15 |
(Ⅰ)估计该校高二年级同学中,需要学校提供学法指导的同学的比例(用百分数表示,保留两位有效数字);
(Ⅱ)能否有95%的把握认为该校高二年级同学是否需要学校提供学法指导与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查方法来估计该校高二年级同学中,需要学校提供学法指导?说明理由.
附: