题目内容

正四棱柱ABCD-A1B1C1D1内接于一个球,且底面ABCD边长为1,高AA1
2
,则A、B两点的球面距离为(  )
A、π
B、
π
2
C、
π
3
D、
π
6
分析:已知正四棱柱ABCD-A1B1C1D1的底面ABCD边长为1,高AA1=
2
,它的八个顶点都在同一球面上,那么,正四棱柱ABCD-A1B1C1D1的对角线长为球的直径,中点O为球心.则易得球的半径. 根据球面距离的定义,应先算出球面两点对球心的张角,再乘以球的半径即可.
解答:解:已知正四棱柱ABCD-A1B1C1D1的底面ABCD边长为1,高AA1=
2
,它的八个顶点都在同一球面上,
那么,正四棱柱ABCD-A1B1C1D1的对角线长为球的直径,中点O为球心.
正四棱柱对角线AC1=2,
则球的半径为1.
根据球面距离的定义,可得∠AOB=
π
3

则A,B两点的球面距离为
π
3
•1=
π
3

那么球的半径是 1;A,B两点的球面距离为
π
3

故选C.
点评:(1)涉及到多面体与球相关的“切”“接”问题时,关键是抓住球心的位置.球心是球的灵魂.
(2)根据球面距离的定义,应先算出球面两点对球心的张角,再乘以球的半径.这是通性通法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网