题目内容
【题目】如图所示的几何体中,垂直于梯形所在的平面,为的中点,,四边形为矩形,线段交于点.
(1)求证:平面;
(2)求二面角的正弦值;
(3)在线段上是否存在一点,使得与平面所成角的大小为?若存在,求出的长;若不存在,请说明理由.
【答案】(1)见解析(2)(3)在线段上存在一点满足题意,且
【解析】
(1)由题意结合线面平行的判定定理即可证得题中的结论;
(2)建立空间直角坐标系,利用两个半平面的法向量可得二面角的余弦值,然后利用同角三角函数基本关系可得二面角的正弦值;
(3)假设点Q存在,利用直线的方向向量和平面的法向量计算可得点Q的存在性和位置.
(1)因为四边形为矩形,所以为的中点.连接,
在中,分别为的中点,所以,
因为平面,平面,
所以平面.
(2)易知两两垂直,如图以为原点,分别以所在直线为轴,建立空间直角坐标系.
则,所以.
设平面的法向量为,
则即解得
令,得
所以平面的一个法向量为.
设平面的法向量为,
,据此可得 ,
则平面的一个法向量为,
,于是.
故二面角的正弦值为.
(3)设存在点满足条件.
由,
设,整理得,
则.
因为直线与平面所成角的大小为,
所以
解得,
由知,即点与重合.
故在线段上存在一点,且.
练习册系列答案
相关题目