题目内容

5.如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A、B.过点A作PB的平行线,交⊙O于点C,连接PC,交⊙O于点E;连接AE,并延长AE交PB于点E,求证:PE•AC=CE•KB.

分析 由△KPE∽△KAP,可得KP2=KE•KA,又由切割线定理得KB2=KE•KA,即KP=KB,再通过线段的转化,即可得出结论.

解答 证明:∵AC∥PB,
∴∠KPE=∠ACE.又PA是⊙O的切线,
∴∠KAP=∠ACE,故∠KPE=∠KAP,
∴△KPE∽△KAP,
∴$\frac{KP}{KA}=\frac{KE}{KP}$,
即KP2=KE•KA.
由切割线定理得KB2=KE•KA
∴KP=KB,
∵AC∥PB,△KPE∽△ACE,
于是$\frac{PE}{CE}=\frac{KP}{AC}$,
故$\frac{PE}{CE}=\frac{KB}{AC}$,
即PE•AC=CE•KB.

点评 本题主要考查了相似三角形的判定及性质以及切割线定理,能够掌握并熟练运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网