题目内容
【题目】设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(x+4)=f(x),且当x∈[﹣2,0]时,f(x)=( )x﹣6,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,求实数a的取值范围是( )
A.(1,2)
B.(2,+∞)
C.
D.
【答案】D
【解析】解:如图所示,
当 ﹣6,可得图象.
根据偶函数的对称性质画出[0,2]的图象,再根据周期性:对任意x∈R,都有f(x+4)=f(x),
画出[2,6]的图象.
画出函数y=loga(x+2)(a>1)的图象.
∵在区间(﹣2,6]内关于x的f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,
∴loga8>3,loga4<3,
∴4<a3<8,
解得 <a<2.
故选:D.
【考点精析】解答此题的关键在于理解函数奇偶性的性质的相关知识,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;
单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:
损坏餐椅数 | 未损坏餐椅数 | 总 计 | |
学习雷锋精神前 | 50 | 150 | 200 |
学习雷锋精神后 | 30 | 170 | 200 |
总 计 | 80 | 320 | 400 |
(1)求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?
(2)请说明是否有97.5%以上的把握认为损毁餐椅数量与学习雷锋精神有关?