题目内容
工商部门对甲、乙两家食品加工企业的产品进行深入检查后,决定对甲企业的5种产品和乙企业的3种产品做进一步的检验.检验员从以上8种产品中每次抽取一种逐一不重复地进行化验检验.
(1)求前3次检验的产品中至少1种是乙企业的产品的概率;
(2)记检验到第一种甲企业的产品时所检验的产品种数共为X,求X的分布列和数学期望.
(1)
(2)
X的数学期望为:X 1 2 3 4 P
解析试题分析:解:(Ⅰ),
∴ 前3次检验的产品中至少1种是乙企业的产品的概率为. 4分
(Ⅱ) X可取值1,2,3,4
, ,
,, 8分
X的分布列如下表:
X的数学期望为:X 1 2 3 4 P
. 12分
考点:独立事件的概率和分布列
点评:主要是考查了概率的运用,利用概率的乘法公式以及分布列的性质来求解,属于基础题。
练习册系列答案
相关题目
设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计).
(1)求方程有实根的概率;
(2)求的分布列和数学期望;
(3)求在先后两次出现的点数中有5的条件下,方程有实根的概率.
某工厂生产两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:
7 | 7 | 7.5 | 9 | 9.5 | |
6 | 8.5 | 8.5 |
(Ⅰ)求表格中与的值;
(Ⅱ)若从被检测的5件种元件中任取2件,求2件都为正品的概率.
在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目。已知某班第一小组与第二小组各 有六位同学选择科目甲或科 目乙,情况如下表:
| 科目甲 | 科目乙 | 总计 |
第一小组 | 1 | 5 | 6 |
第二小组 | 2 | 4 | 6 |
总计 | 3 | 9 | 12 |
(1)求选出的4 人均选科目乙的概率;
(2)设为选出的4个人中选科目甲的人数,求的分布列和数学期望.
一家化妆品公司于今年三八节期间在某社区举行了为期三天的“健康使用化妆品知识讲座”.每位社区居民可以在这三天中的任意一天参加任何一个讨论,也可以放弃任何一个讲座(规定:各个讲座达到预先设定的人数时称为满座).统计数据表明,各个讲座各天满座的概率如下表:
| 洗发水讲座 | 洗面奶讲座 | 护肤霜讲座 | 活颜营养讲座 | 面膜使用讲座 |
3月8日 | |||||
3月9日 | |||||
3月10日 |
(2)设3月9日各个讲座满座的数目为,求随机变量的分布列和数学期望.