题目内容

平面直角坐标系中,已知点P0(1,0),P1(2,1),且
PnPn+1
=-
1
2
Pn-1Pn
(n∈N*).当n→+∞时,点Pn无限趋近于点M,则点M的坐标为
 
分析:由题设条件知
PnPn+1
=-
1
2
Pn-1Pn
=(-
1
2
)
n
(1,1).再由
lim
n→∞
(-
1
2
)
n
(1,1)=(1,1)能得到M点的坐标.
解答:解:∵
PnPn+1
=-
1
2
Pn-1Pn
(n∈N*),
=(-
1
2
)
n
P0P1
=(-
1
2
)
n
(
OP1
-
OP0
)
=(-
1
2
)
n
(1,1).
∴P2(2-
1
2
,1-
1
2
),P3(2-
1
2
+(-
1
2
)
2
,1-
1
2
+(-
1
2
)
2
),…,Pn(2-
1
2
+(-
1
2
)
2
+…+(-
1
2
)n-1
,1-
1
2
+(-
1
2
)
2
+…+(-
1
2
)n-1

∴Pn(2+
-
1
2
[1-(-
1
2
)n-1]
1+
1
2
,1+
-
1
2
[1-(-
1
2
)n-1]
1+
1
2
,),
∵点Pn无限趋近于点M,
∴点M的坐标为(
5
3
2
3

故答案为(
5
3
2
3
).
点评:本题考查数列的极限和应用,解题时要注意向量的坐标运算.同时考查了运算能力和分析归纳推理能力,属中档题题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网