题目内容
若x∈R,n∈N*,定义:![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102838574066536/SYS201311031028385740665011_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102838574066536/SYS201311031028385740665011_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102838574066536/SYS201311031028385740665011_ST/2.png)
A.是偶函数
B.是奇函数
C.既是奇函数也是偶函数
D.既不是奇函数也不是偶函数
【答案】分析:依题意,
=(x-6)(x-5)(x-4)…(x+6),利用函数奇偶性的概念判断即可.
解答:解:∵
=(x-6)(x-5)(x-4)…(x+6),
∴
=(-x-6)(-x-5)…(-x)•(-x+1)…(-x+6)
=(-1)13•(x+6)(x+5)…x•(x-1)(x-2)…(x-6)
=-(x-6)(x-5)(x-4)…(x+6)
=-
,
又f(x)=x
,
∴f(-x)=-x•
=-x•(-
)=x
=f(x),
∴f(x)=x
是偶函数.
故选A.
点评:本题考查函数奇偶性的判断,求得
=(x-6)(x-5)(x-4)…(x+6)是判断的基础,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102838574066536/SYS201311031028385740665011_DA/0.png)
解答:解:∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102838574066536/SYS201311031028385740665011_DA/1.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102838574066536/SYS201311031028385740665011_DA/2.png)
=(-1)13•(x+6)(x+5)…x•(x-1)(x-2)…(x-6)
=-(x-6)(x-5)(x-4)…(x+6)
=-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102838574066536/SYS201311031028385740665011_DA/3.png)
又f(x)=x
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102838574066536/SYS201311031028385740665011_DA/4.png)
∴f(-x)=-x•
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102838574066536/SYS201311031028385740665011_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102838574066536/SYS201311031028385740665011_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102838574066536/SYS201311031028385740665011_DA/7.png)
∴f(x)=x
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102838574066536/SYS201311031028385740665011_DA/8.png)
故选A.
点评:本题考查函数奇偶性的判断,求得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102838574066536/SYS201311031028385740665011_DA/9.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目