题目内容
【题目】如图,在直三棱柱中,点分别为线段的中点.
(1)求证:平面;
(2)若在边上,,求证:.
【答案】(1)详见解析(2)详见解析
【解析】
试题分析:(1)由题意,利用三角形中位线定理可证MN∥BC,即可判定MN∥平面;(2)利用线面垂直的性质可证CC1⊥AD,结合已知可证AD⊥平面,从而证明AD⊥BC,结合(1)知,MN∥BC,即可证明MN⊥AD
试题解析:(1)如图,连结A1C.
在直三棱柱ABC-A1B1C1中,侧面AA1C1C为平行四边形.
又因为N为线段AC1的中点,
所以A1C与AC1相交于点N,
即A1C经过点N,且N为线段A1C的中点. ……………… 2分
因为M为线段A1B的中点,
所以MN∥BC. ……………… 4分
又MN平面BB1C1C,BC平面BB1C1C,
所以MN∥平面BB1C1C. ………………… 6分
(2)在直三棱柱ABC-A1B1C1中,CC1⊥平面ABC.
又AD平面ABC,所以CC1⊥AD. …………………… 8分
因为AD⊥DC1,DC1平面BB1C1C,CC1平面BB1C1C,CC1∩DC1=C1,
所以AD⊥平面BB1C1C. …………………… 10分
又BC平面BB1C1C,所以AD⊥BC. …………………… 12分
又由(1)知,MN∥BC,所以MN⊥AD. …………………… 14分
练习册系列答案
相关题目