ÌâÄ¿ÄÚÈÝ
ÓÐÏÂÁÐÎå¸öÃüÌ⣺
¢ÙÔÚ¡÷ABCÖУ¬p£ºA£¾B£»q£ºsinA£¾sinB£»ÔòÃüÌâpÊÇÃüÌâqµÄ³äÒªÌõ¼þ£»
¢Úp£ºÊýÁÐ{an}ÊǵȲîÊýÁУ¬q£ºÊýÁÐ{an}Êǵ¥µ÷ÊýÁУ»ÃüÌâpÊÇÃüÌâqµÄ³äÒªÌõ¼þ£»
¢ÛP£º¡÷ABCÊÇÈñ½Ç¡÷ABC£¬q£ºsinA£¾cosB£»ÔòÃüÌâpÊÇÃüÌâqµÄ³äÒªÌõ¼þ£»
¢Ü¦Á¡Ù
»ò¦Â¡Ù
ÊÇcos£¨¦Á+¦Â£©¡Ù
³ÉÁ¢µÄ±ØÒª²»³ä·ÖÌõ¼þ£»
¢Ýa£¼0ÊÇ·½³Ìax2+2x+1=0ÖÁÉÙÓÐÒ»¸ö¸ºÊý¸ùµÄ³ä·Ö²»±ØÒªÌõ¼þ£®
ÆäÖÐÕýÈ·µÄÃüÌâÐòºÅÊÇ £®
¢ÙÔÚ¡÷ABCÖУ¬p£ºA£¾B£»q£ºsinA£¾sinB£»ÔòÃüÌâpÊÇÃüÌâqµÄ³äÒªÌõ¼þ£»
¢Úp£ºÊýÁÐ{an}ÊǵȲîÊýÁУ¬q£ºÊýÁÐ{an}Êǵ¥µ÷ÊýÁУ»ÃüÌâpÊÇÃüÌâqµÄ³äÒªÌõ¼þ£»
¢ÛP£º¡÷ABCÊÇÈñ½Ç¡÷ABC£¬q£ºsinA£¾cosB£»ÔòÃüÌâpÊÇÃüÌâqµÄ³äÒªÌõ¼þ£»
¢Ü¦Á¡Ù
¦Ð |
6 |
¦Ð |
6 |
1 |
2 |
¢Ýa£¼0ÊÇ·½³Ìax2+2x+1=0ÖÁÉÙÓÐÒ»¸ö¸ºÊý¸ùµÄ³ä·Ö²»±ØÒªÌõ¼þ£®
ÆäÖÐÕýÈ·µÄÃüÌâÐòºÅÊÇ
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¼òÒ×Âß¼
·ÖÎö£º¢ÙÔÚ¡÷ABCÖУ¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ
=
£¬¶ÔÓÚq£ºsinA£¾sinB?a£¾b?A£¾B£®¼´¿ÉÅжϳö£®
¢Úp£ºÊýÁÐ{an}ÊǵȲîÊýÁУ¬È¡an=1£¬¶ø²»Êǵ¥µ÷ÊýÁУ»q£ºÊýÁÐ{an}Êǵ¥µ÷ÊýÁУ¬È¡an=
£¬¶ø²»ÊǵȲîÊýÁУ¬¼´¿ÉÅжϳö£®
¢Û¶ÔÓÚq£ºsinA£¾cosB=sin(
-B)£¬ÓɢٿɵÃA£¾
-B£¬¿ÉÖª¡÷ABC¿ÉÒÔ²»ÊÇÈñ½Ç¡÷ABC£¬¼´¿ÉÅжϳö£»
¢ÜÓÉcos£¨¦Á+¦Â£©¡Ù
³ÉÁ¢£¬¿ÉµÃ¦Á¡Ù
»ò¦Â¡Ù
£¬¶ø·´Ö®²»³ÉÁ¢£¬ÀýÈçÈ¡¦Á+¦Â=2¦Ð+
£¬¼´¿ÉÅжϳö£»
¢Ý·½³Ìax2+2x+1=0ÓÐʵÊý¸ù£¬Ôò¡÷¡Ý0»òa=0£¬½âµÃa¡Ü1»òa=0£¬µ±a¡Ù0ʱ£¬·½³ÌµÄÁ½¸öʵÊý¸ùÂú×ãx1x2=
£¬µ±a£¼0ÊÇ·½³Ìax2+2x+1=0ÖÁÉÙÓÐÒ»¸ö¸ºÊý¸ù£¬¶øa=0£¬·½³ÌµÄʵÊý¸ùΪ-
£®¼´¿ÉÅжϳö£®
a |
sinA |
b |
sinB |
¢Úp£ºÊýÁÐ{an}ÊǵȲîÊýÁУ¬È¡an=1£¬¶ø²»Êǵ¥µ÷ÊýÁУ»q£ºÊýÁÐ{an}Êǵ¥µ÷ÊýÁУ¬È¡an=
1 |
n |
¢Û¶ÔÓÚq£ºsinA£¾cosB=sin(
¦Ð |
2 |
¦Ð |
2 |
¢ÜÓÉcos£¨¦Á+¦Â£©¡Ù
1 |
2 |
¦Ð |
6 |
¦Ð |
6 |
¦Ð |
3 |
¢Ý·½³Ìax2+2x+1=0ÓÐʵÊý¸ù£¬Ôò¡÷¡Ý0»òa=0£¬½âµÃa¡Ü1»òa=0£¬µ±a¡Ù0ʱ£¬·½³ÌµÄÁ½¸öʵÊý¸ùÂú×ãx1x2=
1 |
a |
1 |
2 |
½â´ð£º
½â£º¢ÙÔÚ¡÷ABCÖУ¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ
=
£¬¶ÔÓÚq£ºsinA£¾sinB?a£¾b?A£¾B£®Òò´ËÃüÌâpÊÇÃüÌâqµÄ³äÒªÌõ¼þ£¬ÕýÈ·£®
¢Úp£ºÊýÁÐ{an}ÊǵȲîÊýÁУ¬È¡an=1£¬¶ø²»Êǵ¥µ÷ÊýÁУ¬¡àpÍƲ»³öq£»q£ºÊýÁÐ{an}Êǵ¥µ÷ÊýÁУ¬È¡an=
£¬¶ø²»ÊǵȲîÊýÁУ»Òò´ËÃüÌâpÊÇÃüÌâqµÄ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ£¬Òò´Ë²»ÕýÈ·£®
¢Û¶ÔÓÚq£ºsinA£¾cosB=sin(
-B)£¬ÓɢٿɵÃA£¾
-B£¬Òò´Ë¡÷ABC¿ÉÒÔ²»ÊÇÈñ½Ç¡÷ABC£»Òò´ËÃüÌâpÊÇÃüÌâqµÄ³äÒªÌõ¼þ²»ÕýÈ·£»
¢ÜÓÉcos£¨¦Á+¦Â£©¡Ù
³ÉÁ¢£¬¿ÉµÃ¦Á¡Ù
»ò¦Â¡Ù
£¬¶ø·´Ö®²»³ÉÁ¢£¬ÀýÈçÈ¡¦Á+¦Â=2¦Ð+
£¬Òò´Ë¦Á¡Ù
»ò¦Â¡Ù
ÊÇcos£¨¦Á+¦Â£©¡Ù
³ÉÁ¢µÄ±ØÒª²»³ä·ÖÌõ¼þ£»
¢Ý·½³Ìax2+2x+1=0ÓÐʵÊý¸ù£¬Ôò¡÷¡Ý0»òa=0£¬½âµÃa¡Ü1»òa=0£¬µ±a¡Ù0ʱ£¬·½³ÌµÄÁ½¸öʵÊý¸ùÂú×ãx1x2=
£¬Òò´Ëa£¼0ÊÇ·½³Ìax2+2x+1=0ÖÁÉÙÓÐÒ»¸ö¸ºÊý¸ùµÄ³ä·ÖÌõ¼þ£»
¶øa=0£¬·½³ÌµÄʵÊý¸ùΪ-
£®¡àa£¼0ÊÇ·½³Ìax2+2x+1=0ÖÁÉÙÓÐÒ»¸ö¸ºÊý¸ùµÄ³ä·Ö²»±ØÒªÌõ¼þ£®ÕýÈ·£®
ÆäÖÐÕýÈ·µÄÃüÌâÐòºÅÊÇ ¢Ù¢Ü¢Ý£®
¹Ê´ð°¸Îª£º¢Ù¢Ü¢Ý£®
a |
sinA |
b |
sinB |
¢Úp£ºÊýÁÐ{an}ÊǵȲîÊýÁУ¬È¡an=1£¬¶ø²»Êǵ¥µ÷ÊýÁУ¬¡àpÍƲ»³öq£»q£ºÊýÁÐ{an}Êǵ¥µ÷ÊýÁУ¬È¡an=
1 |
n |
¢Û¶ÔÓÚq£ºsinA£¾cosB=sin(
¦Ð |
2 |
¦Ð |
2 |
¢ÜÓÉcos£¨¦Á+¦Â£©¡Ù
1 |
2 |
¦Ð |
6 |
¦Ð |
6 |
¦Ð |
3 |
¦Ð |
6 |
¦Ð |
6 |
1 |
2 |
¢Ý·½³Ìax2+2x+1=0ÓÐʵÊý¸ù£¬Ôò¡÷¡Ý0»òa=0£¬½âµÃa¡Ü1»òa=0£¬µ±a¡Ù0ʱ£¬·½³ÌµÄÁ½¸öʵÊý¸ùÂú×ãx1x2=
1 |
a |
¶øa=0£¬·½³ÌµÄʵÊý¸ùΪ-
1 |
2 |
ÆäÖÐÕýÈ·µÄÃüÌâÐòºÅÊÇ ¢Ù¢Ü¢Ý£®
¹Ê´ð°¸Îª£º¢Ù¢Ü¢Ý£®
µãÆÀ£º±¾Ì⿼²éÁ˼òÒ×Âß¼µÄÓйØ֪ʶ¡¢ÕýÏÒ¶¨ÀíµÄÓ¦Óá¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔ¡¢Ò»Ôª¶þ´ÎÓÉʵÊý¸ùÓëÅбðʽµÄ¹Øϵ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿