题目内容
【题目】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D.有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明;
(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.
【答案】(1)0(2)偶函数(3){x|-≤x<-
或-
<x<3或3<x≤5}.
【解析】
(1)利用赋值法求结果,(2)利用赋值法,结合奇偶性定义进行证明,(3)根据赋值法得f(16×4)=3,再利用单调性化简不等式为0<|(3x+1)(2x-6)|≤64,最后解不等式得结果.
(1)令x1=x2=1,
有f(1×1)=f(1)+f(1),解得f(1)=0.
(2)f(x)为偶函数,证明如下:
令x1=x2=-1,
有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.
令x1=-1,x2=x,有f(-x)=f(-1)+f(x),
∴f(-x)=f(x).∴f(x)为偶函数.
(3)f(4×4)=f(4)+f(4)=2,
f(16×4)=f(16)+f(4)=3.
由f(3x+1)+f(2x-6)≤3,
变形为f[(3x+1)(2x-6)]≤f(64).(*)
∵f(x)为偶函数,∴f(-x)=f(x)=f(|x|).
∴不等式(*)等价于f[|(3x+1)(2x-6)|]≤f(64).
又∵f(x)在(0,+∞)上是增函数,
∴|(3x+1)(2x-6)|≤64,且(3x+1)(2x-6)≠0.
解得-≤x<-
或-
<x<3或3<x≤5.
∴x的取值范围是{x|-≤x<-
或-
<x<3或3<x≤5}.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】已知函数f(x)的定义域为[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示,
x | ﹣1 | 0 | 2 | 4 | 5 |
f(x) | 1 | 2 | 1.5 | 2 | 1 |
下列关于函数f(x)的命题:
①函数f(x)的值域为[1,2];
②如果当x∈[﹣1,t]时,f(x)的最大值为2,那么t的最大值为4;
③函数f(x)在[0,2]上是减函数;
④当1<a<2时,函数y=f(x)﹣a最多有4个零点.
其中正确命题的序号是 .