题目内容

15.在Rt△ABC中,∠C=90°,若△ABC所在平面内$\overrightarrow{PA}+\overrightarrow{PB}+λ\overrightarrow{PC}$=$\overrightarrow{0}$,则
(1)当λ=1时,$\frac{|PA{|}^{2}+|PB{|}^{2}}{|PC{|}^{2}}$=5;
(2)$\frac{|PA{|}^{2}+|PB{|}^{2}}{|PC{|}^{2}}$的最小值为1.

分析 (1)可分别以直线CA,CB为x,y轴,建立平面直角坐标系,并设A(a,0),B(0,b),P(x,y),从而可以求出$\overrightarrow{PA},\overrightarrow{PB},\overrightarrow{PC}$的坐标,而根据$\overrightarrow{PA}+\overrightarrow{PB}+λ\overrightarrow{PC}=\overrightarrow{0}$便可解出x,y为:$x=\frac{a}{λ+2},y=\frac{b}{λ+2}$,这样便得出$\overrightarrow{PA}=(a-\frac{a}{λ+2},-\frac{b}{λ+2})$,$\overrightarrow{PB}=(-\frac{a}{λ+2},b-\frac{b}{λ+2})$,$\overrightarrow{PC}=(-\frac{a}{λ+2},-\frac{b}{λ+2})$,从而可以求出$\frac{|\overrightarrow{PA}{|}^{2}+|\overrightarrow{PB}{|}^{2}}{|\overrightarrow{PC}{|}^{2}}=(λ+1)^{2}+1$,从而λ=1
时,便可得出$\frac{|\overrightarrow{PA}{|}^{2}+|\overrightarrow{PB}{|}^{2}}{|\overrightarrow{PC}{|}^{2}}$的值;
(2)由上面$\frac{|\overrightarrow{PA}{|}^{2}+|\overrightarrow{PB}{|}^{2}}{|\overrightarrow{PC}{|}^{2}}=(λ+1)^{2}+1$,便可得到,当λ=-1时,$\frac{|\overrightarrow{PA}{|}^{2}+|\overrightarrow{PB}{|}^{2}}{|\overrightarrow{PC}{|}^{2}}$取最小值.

解答 解:分别以边CA,CB为x,y轴,建立如图所示平面直角坐标系,设A(a,0),B(0,b),P(x,y),则:
$\overrightarrow{PA}=(a-x,-y),\overrightarrow{PB}=(-x,b-y)$,$\overrightarrow{PC}=(-x,-y)$;
∵$\overrightarrow{PA}+\overrightarrow{PB}+λ\overrightarrow{PC}=\overrightarrow{0}$;
∴$\left\{\begin{array}{l}{a-x-x-λx=0}\\{-y+b-y-λy=0}\end{array}\right.$;
∴$\left\{\begin{array}{l}{x=\frac{a}{λ+2}}\\{y=\frac{b}{λ+2}}\end{array}\right.$;
∴$\overrightarrow{PA}=(a-\frac{a}{λ+2},-\frac{b}{λ+2})$,$\overrightarrow{PB}=(-\frac{a}{λ+2},b-\frac{b}{λ+2})$,$\overrightarrow{PC}=(-\frac{a}{λ+2},-\frac{b}{λ+2})$;
∴$\frac{|\overrightarrow{PA}{|}^{2}+|\overrightarrow{PB}{|}^{2}}{|\overrightarrow{PC}{|}^{2}}$=$\frac{(a-\frac{a}{λ+2})^{2}+(-\frac{b}{λ+2})^{2}+(-\frac{a}{λ+2})^{2}+(b-\frac{b}{λ+2})^{2}}{(-\frac{a}{λ+2})^{2}+(-\frac{b}{λ+2})^{2}}$=(λ+1)2+1;
∴(1)当λ=1时,$\frac{|\overrightarrow{PA}{|}^{2}+|\overrightarrow{PB}{|}^{2}}{|\overrightarrow{PC}{|}^{2}}=5$;
(2)显然看出,λ=-1时,$\frac{|\overrightarrow{PA}{|}^{2}+|\overrightarrow{PB}{|}^{2}}{|\overrightarrow{PC}{|}^{2}}$取最小值,最小值为1.
故答案为:5,1.

点评 考查通过建立平面直角坐标系,利用向量的坐标解决向量问题的方法,由点的坐标能求向量的坐标,根据向量的坐标能求向量长度,二次函数的最值问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网