题目内容
6.设A、B两点的坐标分别是(-1,-1),(3,7),求线段AB的垂直平分线的方程.分析 设点P(x,y)为线段AB的垂直平分线上的任意一点,可得|PA|=|PB|,利用两点之间的距离公式即可得出.
解答 解:设点P(x,y)为线段AB的垂直平分线上的任意一点,则|PA|=|PB|,
∴$\sqrt{(x+1)^{2}+(y+1)^{2}}$=$\sqrt{(x-3)^{2}+(y-7)^{2}}$,
化为x+2y-7=0,
∴线段AB的垂直平分线的方程为x+2y-7=0.
点评 本题考查了两点之间的距离公式、线段的垂直平分线的性质,考查了计算能力,属于基础题.
练习册系列答案
相关题目
14.将2n按如表的规律填在5列的数表中,设22015排在数表的第n行,第m列,则m+n=506
21 | 22 | 23 | 24 | |
28 | 27 | 26 | 25 | |
29 | 210 | 211 | 212 | |
216 | 215 | 214 | 213 | |
… | … | … | … | … |
11.当-$\frac{π}{2}$<x<$\frac{π}{2}$时,函数y=lg|x|的图象是( )
A. | 关于原点对称 | B. | 关于x轴对称 | C. | 关于y轴对称 | D. | 不是对称图形 |
18.若函数f(x)=ax3+ax2+x-1在实数R上是增函数,则实数a的取值范围是( )
A. | [-1,2] | B. | [0,3] | C. | [2,5] | D. | (0,3) |
15.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)
(2)现计划在这次场外调查中按年龄段选取9名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
16.已知函数f(x)满足f(0)=1,且对于任意实数x,y∈R都有:f(xy+1)=f(x)f(y)-f(y)-x+2,若x∈[1,3],则$\frac{f(x-1)}{{f}^{2}(x)+1}$的最大值为( )
A. | $\frac{\sqrt{2}-1}{2}$ | B. | $\frac{\sqrt{2}+1}{2}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{17}$ |