题目内容

【题目】如图,四棱锥P-ABCD中,PD⊥平面ABCDPD=DC=BC=1,AB=2,AB∥DC∠BCD=900

1)求证:PC⊥BC

2)求点A到平面PBC的距离

【答案】1)见解析(2

【解析】

试题(1),要证明PC⊥BC,可以转化为证明BC垂直于PC所在的平面,由PD⊥平面ABCDPD=DC=BC=1AB=2AB∥DC∠BCD=90°,容易证明BC⊥平面PCD,从而得证;(2)连接AC,则三棱锥P-ACB与三棱锥A-PBC体积相等,而三棱锥P-ACB体积易求,三棱锥A-PBC的地面PBC的面积易求,其高即为点A到平面PBC的距离,设为h,则利用体积相等即求

试题解析:(1证明:∵PD⊥平面ABCDBC平面ABCD∴PD⊥BC

∠BCD90°知,BC⊥DC

∵PD∩DCD∴BC⊥平面PDC∴BC⊥PC

设点A到平面PBC的距离为h

∵AB∥DC∠BCD90°∴∠ABC90°

连接AC(图略),∵AB2BC1∴SABCAB·BC1

∵PD⊥平面ABCDPD1

∴VPABCSABC·PD

∵PD⊥平面ABCD∴PD⊥DC∵PDDC1∴PC

∵PC⊥BCBC1∴SPBCPC·BC

∵VAPBCVPABCSPBC·h∴h

A到平面PBC的距离为

练习册系列答案
相关题目

【题目】体温是人体健康状况的直接反应,一般认为成年人腋下温度T(单位:)平均在之间即为正常体温,超过即为发热.发热状态下,不同体温可分成以下三种发热类型:低热:;高热:;超高热(有生命危险):.某位患者因患肺炎发热,于12日至26日住院治疗.医生根据病情变化,从14日开始,以3天为一个疗程,分别用三种不同的抗生素为该患者进行消炎退热.住院期间,患者每天上午800服药,护士每天下午1600为患者测量腋下体温记录如下:

抗生素使用情况

没有使用

使用抗生素A

使用抗生素B治疗

日期

12

13

14

15

16

17

18

19

体温(

38.7

39.4

39.7

40.1

39.9

39.2

38.9

39.0

抗生素使用情况

使用抗生素C治疗

没有使用

日期

20

21

22

23

24

25

26

体温(

38.4

38.0

37.6

37.1

36.8

36.6

36.3

I)请你计算住院期间该患者体温不低于的各天体温平均值;

II)在19—23日期间,医生会随机选取3天在测量体温的同时为该患者进行某一特殊项目a项目的检查,记X为高热体温下做a项目检查的天数,试求X的分布列与数学期望;

III)抗生素治疗一般在服药后2-8个小时就能出现血液浓度的高峰,开始杀灭细菌,达到消炎退热效果.假设三种抗生素治疗效果相互独立,请依据表中数据,判断哪种抗生素治疗效果最佳,并说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网