题目内容
(本小题满分14分)
设数列{n}的首项1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4……)。
(Ⅰ)求证:数列{n}是等比数例;
(Ⅱ)设数列{n}的公比为ƒ (t),作数列{bn},使b1=1,bn=ƒ( )(n=2,3,4……),求数列{bn}的通项bn;
(Ⅲ)求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n-1.
(本题满分14分)
解:(1)由S1==1,S2=1+代入已知等式中,得
3t(1+)-(2t+3)=3t………………………………………………1分
解得 =, =1 ∴ 可看作=.………………2分
由已知:3tSn-(2t+3)Sn-1=3t,①
3tSn-1-(2t+3)Sn-2=3t.②…………………………………3分
①-②得
3tn-(2t+3)n-1=0.
∴= , n=2,3,4,………
所以{n}是首项为1,公比为的等比数列………………………5分
(2)由ƒ ( t ) = = + ,得……………………………………6分
bn= ƒ ( )= + bn-1 即 bn-bn-1= ,
所以,{bn}是首项为1,公差为的等差数列。
因为bn=1+ (n-1) = ;…………………………………………8分
(3)由bn= ,可知{b2n-1}和{b2n}是首项分别为1和,公差均为的等差数列,
于是b2n= ,………………………………………………………10分
∴b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n-1
= b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)
=-(b2+b4+…+b2n)
=-·(+)
=-(2n2+3n). ………………………………………………………14分