题目内容
【题目】某种质地均匀的正四面体玩具的4个面上分别标有数字0,1,2,3,将这个玩具抛掷次,记第次抛掷后玩具与桌面接触的面上所标的数字为,数列的前和为.记是3的倍数的概率为.
(1)求,;
(2)求.
【答案】(1),(2)
【解析】
(1)抛掷一次,出现一个0和一个3时符合要求,抛掷两次,出现,,,,,时,符合要求,故计6种情况,由此能求出和;
(2)设被3除时余1的概率为,被3除时余2的概率为,推导出,
,
,从而,进而,由此能求出.
解:(1)抛掷一次,一共有个结果,出现一个0和一个3时符合要求,故,
抛掷两次,一共有个结果,出现,,,,,时,符合要求,故计6种情况,
故.
(2)设被3除时余1的概率为,被3除时余2的概率为,
则,①
,②
,③
①②③,得:
,
化简,得,
,
又,
是以为首项,为公比的等比数列
.
练习册系列答案
相关题目