题目内容
【题目】已知函数的导函数只有一个极值点,在同一平面直角坐标系中,函数及的图象可以为( )
A. B. C. D.
【答案】A
【解析】A,其中有一个拐点的图像是导函数的图像,另一个为原函数的图像,则当导函数的函数值为负时,原函数是单调递减的,导函数函数值为正时原函数单调递增,符合实际,故是正确的;
B其中有一个拐点的图像是导函数的图像,另一个为原函数的图像,当导函数的函数值为负时,原函数不是单调递减的,不符合题意,故不正确;
C其中有一个拐点的图像是导函数的图像,另一个为原函数的图像,在小于0的区间内,导函数为正,原函数应该是单调递增的,原图不符合这一条件,故不正确;
D其中有一个拐点的图像是导函数的图像,另一个为原函数的图像,整个导函数的图像都在x轴的上方,故原图应该是单调递增的,图像不符合这一实际,故不正确.
故答案为:A.
【题目】如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,.
(1)证明: A1BD // 平面CD1B1;
(2)求三棱柱ABD-A1B1D1的体积.
【题目】某城镇社区为了丰富辖区内广大居民的业余文化生活,创建了社区“文化丹青”大型活动场所,配备了各种文化娱乐活动所需要的设施,让广大居民健康生活、积极向上,社区最近四年内在“文化丹青”上的投资金额统计数据如表: (为了便于计算,把2015年简记为5,其余以此类推)
年份(年) | 5 | 6 | 7 | 8 |
投资金额(万元) | 15 | 17 | 21 | 27 |
(Ⅰ)利用所给数据,求出投资金额与年份之间的回归直线方程;
(Ⅱ) 预测该社区在2019年在“文化丹青”上的投资金额.
附:对于一组数据, 其回归直线的斜率和截距的最小二乘估计分别为.
【题目】为了增强消防安全意识,某中学对全体学生做了一次消防知识讲座,从男生中随机抽取50人,从女生中随机抽取70人参加消防知识测试,统计数据得到如下列联表:
优秀 | 非优秀 | 总计 | |
男生 | 15 | 35 | 50 |
女生 | 30 | 40 | 70 |
总计 | 45 | 75 | 120 |
(Ⅰ)试判断是否有的把握认为消防知识的测试成绩优秀与否与性别有关;
附:
K2=
(Ⅱ)为了宣传消防安全知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6名组成宣传小组,现从这6人中随机抽取2名到校外宣传,求到校外宣传的同学中至少有1名是男生的概率.