题目内容
3.在△ABC中,∠A、B、C对边分别为a、b、c,A=60°,b=1,这个三角形的面积为$\sqrt{3}$,则△ABC外接圆的直径是( )A. | $\sqrt{39}$ | B. | $\frac{\sqrt{39}}{3}$ | C. | $\frac{\sqrt{39}}{6}$ | D. | $\frac{2\sqrt{39}}{3}$ |
分析 由已知利用三角形面积公式可解得c,由余弦定理即可求得a的值,利用正弦定理即可得△ABC外接圆的直径2R.
解答 解:∵A=60°,b=1,这个三角形的面积为$\sqrt{3}$,
∴$\sqrt{3}=\frac{1}{2}×1×c×sin60°$,解得:c=4,
∴由余弦定理可得:a=$\sqrt{{b}^{2}+{c}^{2}-2bccosA}$=$\sqrt{1+16-2×1×4×cos60°}$=$\sqrt{13}$,
∴利用正弦定理可得:△ABC外接圆的直径2R=$\frac{a}{sinA}=\frac{\sqrt{13}}{sin60°}=\frac{2\sqrt{39}}{3}$.
故选:D.
点评 本题主要考查了三角形面积公式,正弦定理,余弦定理的综合应用,属于基础题.
练习册系列答案
相关题目
13.向量$\overrightarrow a=(1,-2)$,$\overrightarrow b=(2,1)$,则( )
A. | $\overrightarrow a$与$\overrightarrow b$的夹角为30° | B. | $\overrightarrow a$与$\overrightarrow b$的夹角为y=ax-a(a>0,a≠1) | ||
C. | $\overrightarrow a⊥\overrightarrow b$ | D. | $\overrightarrow a$∥$\overrightarrow b$ |
11.如图,将平面直角坐标系中的纵轴绕原点O顺时针旋转30°后,构成一个斜坐标平面xOy.在此斜坐标平面xOy中,点P(x,y)的坐标定义如下:过点P作两坐标轴的平行线,分别交两轴于M、N两点,则M在Ox轴上表示的数为x,N在Oy轴上表示的数为y.那么以原点O为圆心的单位圆在此斜坐标系下的方程为( )
A. | x2+y2+xy-1=0 | B. | x2+y2+xy+1=0 | C. | x2+y2-xy-1=0 | D. | x2+y2-xy+1=0 |
18.若运行所给程序输出的值是16,则输入的实数x值为( )
A. | 32 | B. | 8 | C. | -4或8 | D. | 4或-4或8 |
8.在△ABC中,∠A、B、C对边分别为a、b、c,A=60°,b=1,这个三角形的面积为$\sqrt{3}$,则a=( )
A. | 2 | B. | $\sqrt{10}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{13}$ |
15.在△ABC中,已知a=2,b=$\sqrt{3}$,c=3,则cosC=( )
A. | $\frac{5}{6}$ | B. | $\frac{1}{6}$ | C. | $\frac{\sqrt{3}}{9}$ | D. | -$\frac{\sqrt{3}}{6}$ |
12.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三个中至少有一人达标的概率为( )
A. | 0.015 | B. | 0.005 | C. | 0.985 | D. | 0.995 |
2.某高中学校共有学生3000名,各年级的男、女生人数如下表:(其中高三学生具体男、女生人数未统计出,设为x、y名)
(1)若用分层抽样的方法在该校所有学生中抽取45名,则应在高三年级抽取多少名学生?
(2)已知该校高三年级的男女生人数都不少于395名.并且规定如果“一个年级的男女生人数相差不超过6(即男女生人数之差的绝对值不大于6)”则称该年级为“性别平衡年级”,求该校高三年级为“性别平衡年级”的概率.
高一 | 高二 | 高三 | |
男生 | 588 | 520 | x |
女生 | 612 | 480 | y |
(2)已知该校高三年级的男女生人数都不少于395名.并且规定如果“一个年级的男女生人数相差不超过6(即男女生人数之差的绝对值不大于6)”则称该年级为“性别平衡年级”,求该校高三年级为“性别平衡年级”的概率.