题目内容

【题目】为了调查民众对国家实行新农村建设政策的态度,现通过网络问卷随机调查了年龄在20周岁至80周岁的100人,他们年龄频数分布和支持新农村建设人数如下表:

年龄

频数

10

20

30

20

10

10

支持新农村建设

3

11

26

12

6

2

1)根据上述统计数据填下面的列联表,并判断是否有的把握认为以50岁为分界点对新农村建设政策的支持度有差异;

年龄低于50岁的人数

年龄不低于50岁的人数

合计

支持

不支持

合计

2)为了进一步推动新农村建设政策的实施,中央电视台某节目对此进行了专题报道,并在节目最后利用随机拨号的形式在全国范围内选出4名幸运观众(假设年龄均在20周岁至80周岁内),给予适当的奖励.若以频率估计概率,记选出4名幸运观众中支持新农村建设人数为,试求随机变量的分布列和数学期望.

参考数据:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

【答案】1列联表见解析,没有的把握(2)分布列见解析,数学期望为

【解析】

1)根据已知数据填写列联表,从而可利用公式计算出,可判断出无的把握;(2)可判断出服从二项分布:,通过公式计算出所有可能取值的概率,从而得到分布列;再利用求得数学期望.

1列联表

年龄低于岁的人数

年龄不低于岁的人数

合计

支持

不支持

合计

所以没有的把握认为以岁为分界点对新农村建设政策的支持度有差异

2)由题可知,所有可能取值有,且观众支持新农村建设的概率为,因此

所以的分布列是:

所以的数学期望为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网