题目内容
(本题满分12分)已知函数,(1)求为何值时,在上取得最大值;(2)设,若是单调递增函数,求的取值范围.
(1)当时,在上取得最大值. (2) 。
解析
已知函数f(x)=(x2+ax+2)ex,(x,a∈R).(1)当a=0时,求函数f(x)的图象在点A(1,f(1))处的切线方程;(2)若函数y=f(x)为单调函数,求实数a的取值范围;(3)当时,求函数f(x)的极小值.
(12分)已知函数① 求这个函数的导数;② 求这个函数的图象在点x=1处的切线方程.
(本小题满分12分)已知函数在上是增函数,在上是减函数.(1)求函数的解析式;(2)若时,恒成立,求实数的取值范围;(3)是否存在实数,使得方程在区间上恰有两个相异实数根,若存在,求出的范围,若不存在说明理由.
(本小题满分14分)已知函数,其中.(Ⅰ)求函数的单调区间;(Ⅱ)若直线是曲线的切线,求实数的值;(Ⅲ)设,求在区间上的最大值.(其中为自然对数的底数)
(本小题满分14分)已知函数.(1)讨论函数在定义域内的极值点的个数;(2)若函数在处取得极值,对,恒成立,求实数的取值范围;(3)当时,求证:.
(本小题满分14分)已知函数,(Ⅰ)若,求的单调区间;(Ⅱ)在(Ⅰ)的条件下,对,都有,求实数的取值范围;(Ⅲ)若在,上单调递增,在上单调递减,求实数的取值范围。
(本小题满分15分)已知函数(1)若函数在上为增函数,求实数的取值范围;(2)当时,求在上的最大值和最小值;(3)当时,求证对任意大于1的正整数,恒成立.
计算由曲线,直线,,围成图形的面积S.