题目内容
如图,动点与两定点、构成,且,设动点的轨迹为.(1)求轨迹的方程;(2)设直线与轴相交于点,与轨迹相交于点,且,求的取值范围.
(1)(2)
解析
已知椭圆,过点且离心率为.(1)求椭圆的方程;(2)已知是椭圆的左右顶点,动点M满足,连接AM交椭圆于点P,在x轴上是否存在异于A、B的定点Q,使得直线BP和直线MQ垂直.
设椭圆的中心和抛物线的顶点均为原点,、的焦点均在轴上,过的焦点F作直线,与交于A、B两点,在、上各取两个点,将其坐标记录于下表中:(1)求,的标准方程;(2)若与交于C、D两点,为的左焦点,求的最小值;(3)点是上的两点,且,求证:为定值;反之,当为此定值时,是否成立?请说明理由.
已知椭圆的一个顶点和两个焦点构成的三角形的面积为4.(1)求椭圆的方程;(2)已知直线与椭圆交于、两点,试问,是否存在轴上的点,使得对任意的,为定值,若存在,求出点的坐标,若不存在,说明理由.
设:的准线与轴交于点,焦点为;椭圆以为焦点,离心率.设是的一个交点.(1)当时,求椭圆的方程.(2)在(1)的条件下,直线过的右焦点,与交于两点,且等于的周长,求的方程.(3)求所有正实数,使得的边长是连续正整数.
已知椭圆C:+=1的离心率为,左焦点为F(-1,0),(1)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线L与椭圆C交于M,N两点,若,求直线L的方程;(2)椭圆C上是否存在三点P,E,G,使得S△OPE=S△OPG=S△OEG=?
椭圆c:(a>b>0)的离心率为,过其右焦点F与长轴垂直的弦长为1,(1)求椭圆C的方程;(2)设椭圆C的左右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一个交点为M,直线PB与椭圆的另一个交点为N,求证:直线MN经过一定点.
如图,圆与直线相切于点,与正半轴交于点,与直线在第一象限的交点为.点为圆上任一点,且满足,动点的轨迹记为曲线.(1)求圆的方程及曲线的方程;(2)若两条直线和分别交曲线于点、和、,求四边形面积的最大值,并求此时的的值.(3)证明:曲线为椭圆,并求椭圆的焦点坐标.
(2013•浙江)如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.