题目内容

(2013·辽宁高考)如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

(1)求证:平面PAC⊥平面PBC.
(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.
(1)见解析   (2)见解析
(1)由AB是圆的直径,得AC⊥BC;
由PA垂直于圆O所在的平面,得PA⊥平面ABC;又BC?平面ABC,得PA⊥BC.
又PA∩AC=A,PA?平面PAC,AC?平面PAC,
所以BC⊥平面PAC,又BC?平面PBC,所以平面PAC⊥平面PBC.
(2)连接OG并延长交AC于M,

连接QM,QO.由G为△AOC的重心,知M为AC的中点,
由Q为PA的中点,则QM∥PC,
又O为AB中点,得OM∥BC.
因为QM∩MO=M,QM?平面QMO,
MO?平面QMO,BC∩PC=C,BC?平面PBC,PC?平面PBC,
所以平面QMO∥平面PBC.
因为QG?平面QMO,所以QG∥平面PBC.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网