题目内容

如图4,四边形为正方形,平面于点,交于点.

(1)证明:平面
(2)求二面角的余弦值.

(1)详见解析;(2).

解析试题分析:(1)由平面,得到,再由四边形为正方形得到,从而证明平面,从而得到,再结合,即以及直线与平面垂直的判定定理证明平面;(2)先证明三条直线两两垂直,然后以点为坐标原点, 所在直线分别为轴、轴、轴建立空间直角坐标系,利用空间向量法求出二面角的余弦值.
试题解析:(1)平面
,又
平面
,又
平面,即平面
(2)设,则中,,又
,由(1)知

,又
,同理
如图所示,以为原点,建立空间直角坐标系,则


是平面的法向量,则,又
所以,令,得
由(1)知平面的一个法向量
设二面角的平面角为,可知为锐角,
,即所求.
【考点

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网