题目内容
【题目】在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②在上是增函数或者减函数.
(1)若在区间上是闭函数,求常数的值;
(2)找出所有形如的函数(都是常数),使其在区间上是闭函数.
【答案】(1);(2).
【解析】
(1)依据新定义,的定义域和值域都是,且在上单调,建立方程求解;(2)依据新定义,讨论的单调性,列出方程求解即可。
(1)当时,由复合函数单调性知,在区间上是增函数,即有 ,解得 ;
同理,当时,有,解得,综上,。
(2)若在上是闭函数,则在上是单调函数,
①当在上是单调增函数,则 ,解得,检验符合;
②当在上是单调减函数,则,解得,
在上不是单调函数,不符合题意。
故满足在区间上是闭函数只有。
练习册系列答案
相关题目