题目内容
【题目】有一块铁皮零件,其形状是由边长为的正方形截去一个三角形所得的五边形,其中,如图所示.现在需要用这块材料截取矩形铁皮,使得矩形相邻两边分别落在上,另一顶点落在边或边上.设,矩形的面积为.
(1)试求出矩形铁皮的面积关于的函数解析式,并写出定义域;
(2)试问如何截取(即取何值时),可使得到的矩形的面积最大?
【答案】(1),定义域(2)先在DE上截取线段,然后过点M作DE的垂线交BA于点P,再过点P作DE的平行线交DC于点N,最后沿MP与PN截铁皮,所得矩形面积最大.
【解析】
(1)分类讨论,当点分别落在线段或线段上.根据矩形面积即可求得关于的函数解析式及其定义域.
(2)根据(1)由分段函数,结合二次函数的性质可求得面积的最大值.求得取最大值时的值,即可知截取矩形的方式.
(1)依据题意并结合图形,可知:
①当点落在线段上
即时,;
②当点在线段上,
即时,由,
得.
于是.
所以,
定义域.
(2)由(1)知,当时,;
当时,
当且仅当时,等号成立.
因此,y的最大值为.
答:先在DE上截取线段,然后过点M作DE的垂线交BA于点P,再过点P作DE的平行线交DC于点N,最后沿MP与PN截铁皮,所得矩形面积最大,最大面积为.
练习册系列答案
相关题目