题目内容
已知递增数列{an}的通项公式是,则实数λ的取值范围是( )
A. | B. | C. | D. |
D
解:∵,
∴
∵an是递增数列,
∴(n+1)2+λ(n+1)-n2-λn>0
即2n+1+λ>0
∴λ>-2n-1
∵对于任意正整数都成立,
∴λ>-3
故答案为:(-3,+∞)
∴
∵an是递增数列,
∴(n+1)2+λ(n+1)-n2-λn>0
即2n+1+λ>0
∴λ>-2n-1
∵对于任意正整数都成立,
∴λ>-3
故答案为:(-3,+∞)
练习册系列答案
相关题目