题目内容
若a、b、c∈R,写出命题“若ac<0,则ax2+bx+c=0有两个不相等的实数根”的逆命题、否命题、逆否命题,并判断这三个命题的真假
同解析
[解题思路]:认清命题的条件p和结论q,然后按定义写出逆命题、否命题、逆否命题,最后判断真假
逆命题:若ax2+bx+c=0(a、b、c∈R)有两个不相等的实数根,则ac<0;是假命题,如当a=1,b=-3,c=2时,方程x2-3x+2=0有两个不等实根x1=1,x2=2,但ac=2>0
否命题:若ac≥0,则方程ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根;是假命题. 这是因为它和逆命题互为逆否命题,而逆命题是假命题
逆否命题:若ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根,则ac≥0;是真命题. 因为原命题是真命题,它与原命题等价
逆命题:若ax2+bx+c=0(a、b、c∈R)有两个不相等的实数根,则ac<0;是假命题,如当a=1,b=-3,c=2时,方程x2-3x+2=0有两个不等实根x1=1,x2=2,但ac=2>0
否命题:若ac≥0,则方程ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根;是假命题. 这是因为它和逆命题互为逆否命题,而逆命题是假命题
逆否命题:若ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根,则ac≥0;是真命题. 因为原命题是真命题,它与原命题等价
练习册系列答案
相关题目