题目内容
【题目】已知平面与平面、平面都相交,则这三个平面可能的交线有________条.
【答案】1条、2条或3条
【解析】
分平面β与γ平行和不平行进行讨论,并且以棱柱或棱锥的侧面为例进行研究,即可得到此三个平面的交线条数可能是1条、2条或3条.
①若平面β∥平面γ,平面α与平面β,γ都相交,则它们有2条交线,且这2条交线互相平行;
②若平面β∩平面γ=a,平面α是经过直线a的平面,则三个平面只有一条交线,即直线a;
③若平面β∩平面γ=a,平面α与平面β,γ都相交,但交线与直线a不重合,则它们有3条交线,
例如棱柱或棱锥的三个侧面相交于三条直线,即三条侧棱
综上所述,这三个平面的交线的条数可能是1条、2条或3条,
故答案为:1条、2条或3条.
【题目】某小区为了调查居民的生活水平,随机从小区住户中抽取个家庭,得到数据如下:
家庭编号 | 1 | 2 | 3 | 4 | 5 | 6 |
月收入x(千元) | 20 | 30 | 35 | 40 | 48 | 55 |
月支出y(千元) | 4 | 5 | 6 | 8 | 8 | 11 |
参考公式:回归直线的方程是:,其中, .
(1)据题中数据,求月支出(千元)关于月收入(千元)的线性回归方程(保留一位小数);
(2)从这个家庭中随机抽取个,求月支出都少于万元的概率.
【题目】上饶市委、市政府在上饶召开上饶市全面展开新能源工程动员大会,会议动员各方力量,迅速全面展开新能源工程工作.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.
(1)完成列联表,并判断是否有的把握认为该企业生产的这种产品的质量指标值与设备改造有关;
设备改造前 | 设备改造后 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
(2)根据图1和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;
(3)根据市场调查,设备改造后,每生产一件合格品企业可获利200元,一件不合格品亏损150元,用频率估计概率,则生产1000件产品企业大约能获利多少元?
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.