题目内容
【题目】等腰三角形的周长是18,底边长y是一腰长x的函数,则( )
A.y=9-x(0<x≤9)
B.y=9-x(0<x<9)
C.y=18-2x(4.5≤x≤9)
D.y=18-2x(4.5<x<9)
【答案】D
【解析】根据等腰三角形的周长公式列出函数解析式.
∵2x+y=18,∴y=18-2x,则18-2x>0,∴x<9.由构成三角形的条件(两边之和大于第三边)可知2x>18-2x,得x>4.5,
∴函数的定义域为{x|4.5<x<9}.
故答案为:D.
实际问题中,根据等腰三角形的周长公式列出函数解析式,要注意函数的定义域.
练习册系列答案
相关题目
【题目】某单位共有10名员工,他们某年的收入如下表:
员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(万元) | 3 | 3.5 | 4 | 5 | 5.5 | 6.5 | 7 | 7.5 | 8 | 50 |
(1)从该单位中任取2人,此2人中年薪收入高于5万的人数记为,求的分布列和期望;
(2)已知员工年薪收入与工作所限成正相关关系,某员工工作第一年至第四年的年薪如下表:
工作年限 | 1 | 2 | 3 | 4 |
年薪(万元) | 3.0 | 4.2 | 5.6 | 7.2 |
预测该员工第五年的年薪为多少?
附:线性回归方程中系数计算公式和参考数据分别为:
,,其中为样本均值,,,()