题目内容

15.计算:$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$10

分析 利用二阶矩阵乘法法则进行求解.

解答 解:$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$10=$(\begin{array}{l}{1}&{2}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$8=$(\begin{array}{l}{1}&{3}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$7=$(\begin{array}{l}{1}&{4}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$6
=$(\begin{array}{l}{1}&{5}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$5=$(\begin{array}{l}{1}&{6}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$4=$(\begin{array}{l}{1}&{7}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$3
=$(\begin{array}{l}{1}&{8}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$2=$(\begin{array}{l}{1}&{9}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$=$(\begin{array}{l}{1}&{10}\\{0}&{1}\end{array})$.
∴$(\begin{array}{l}{1}&{1}\\{0}&{1}\end{array})$10=$(\begin{array}{l}{1}&{10}\\{0}&{1}\end{array})$.

点评 本题考查二阶矩阵的乘法运算,是基础题,解题时要注意二阶矩阵乘法法则的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网