题目内容

【题目】已知数列{an}为等差数列,且a1=1.{bn}为等比数列,数列{an+bn}的前三项依次为3,7,13.求
(1)数列{an},{bn}的通项公式;
(2)数列{an+bn}的前n项和Sn

【答案】
(1)解:设公差为d,公比为q

∵数列{an+bn}的前三项依次为3,7,13

又a1=1

∴an=2n﹣1,bn=2n


(2)解:∵an=2n﹣1,bn=2n

∴an+bn=(2n﹣1)+2n

∴Sn=(a1+a2+…+an)+(b1+b2+…+bn

=

=n2+2n+1﹣2


【解析】(1)∵已知数列{an}为等差数列,且a1=1.{bn}为等比数列,数列{an+bn}的前三项依次为3,7,13,所以我们易得到三个关于b1和公差d及公比q的方程,解方程后,易得数列{an},{bn}的通项公式;(2)由(1)易得数列{an+bn}的通项公式,利用裂项法易得数列{an+bn}的前n项和Sn
【考点精析】关于本题考查的等差数列的通项公式(及其变式)和等比数列的通项公式(及其变式),需要了解通项公式:;通项公式:才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网