题目内容
【题目】已知数列{an}为等差数列,且a1=1.{bn}为等比数列,数列{an+bn}的前三项依次为3,7,13.求
(1)数列{an},{bn}的通项公式;
(2)数列{an+bn}的前n项和Sn .
【答案】
(1)解:设公差为d,公比为q
∵数列{an+bn}的前三项依次为3,7,13
∴
又a1=1
∴
∴an=2n﹣1,bn=2n
(2)解:∵an=2n﹣1,bn=2n
∴an+bn=(2n﹣1)+2n
∴Sn=(a1+a2+…+an)+(b1+b2+…+bn)
=
=n2+2n+1﹣2
【解析】(1)∵已知数列{an}为等差数列,且a1=1.{bn}为等比数列,数列{an+bn}的前三项依次为3,7,13,所以我们易得到三个关于b1和公差d及公比q的方程,解方程后,易得数列{an},{bn}的通项公式;(2)由(1)易得数列{an+bn}的通项公式,利用裂项法易得数列{an+bn}的前n项和Sn .
【考点精析】关于本题考查的等差数列的通项公式(及其变式)和等比数列的通项公式(及其变式),需要了解通项公式:或;通项公式:才能得出正确答案.
【题目】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方
图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料,在犯错误的概率不超过的前提下,你是否有理由认为“体育迷”与性别有关?
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为.若每次抽取的结果是相互独立的,求的分布列,期望和方差.
附: