ÌâÄ¿ÄÚÈÝ

18£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-3£¬0£©¡¢F2£¨3£¬0£©£¬Ö±Ïßy=kxÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£®
£¨1£©ÈôÈý½ÇÐÎAF1F2µÄÖܳ¤Îª$4\sqrt{3}+6$£¬ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Èô$2\sqrt{3}£¼a£¼3\sqrt{2}$£¬ÇÒÒÔABΪֱ¾¶µÄÔ²¹ýÍÖÔ²µÄÓÒ½¹µã£¬ÇóÖ±Ïßy=kxбÂÊkµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{c=3}\\{2a+2c=4\sqrt{3}+6}\end{array}\right.$£¬Çó³öa¡¢cµÄÖµ£¬½áºÏÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\\{y=kx}\end{array}\right.$£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØϵµÃµ½A£¬BÁ½µãºá×ø±êµÄºÍÓë»ý£¬ÒÀÌâÒ⣬AF2¡ÍBF2£¬ÀûÓÃÏòÁ¿ÊýÁ¿»ýΪ0µÃµ½¹ØÓÚa£¬kµÄ¹Øϵʽ£¬ÔÚ½áºÏaµÄ·¶Î§µÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{c=3}\\{2a+2c=4\sqrt{3}+6}\end{array}\right.$£¬µÃa=2$\sqrt{3}$£¬c=3£®
½áºÏa2=b2+c2£¬½âµÃa2=12£¬b2=3£®
ÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{3}=1$£»
£¨2£©ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\\{y=kx}\end{array}\right.$£¬µÃ£¨b2+a2k2£©x2-a2b2=0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
¡à${x}_{1}+{x}_{2}=0£¬{x}_{1}{x}_{2}=-\frac{{a}^{2}{b}^{2}}{{b}^{2}+{a}^{2}{k}^{2}}$£¬
ÒÀÌâÒ⣬AF2¡ÍBF2£¬
¡ß$\overrightarrow{{F}_{2}A}=£¨{x}_{1}-3£¬{y}_{1}£©$£¬$\overrightarrow{{F}_{2}B}=£¨{x}_{2}-3£¬{y}_{2}£©$£¬
¡à$\overrightarrow{{F}_{2}A}•\overrightarrow{{F}_{2}B}$=$£¨{x}_{1}-3£©£¨{x}_{2}-3£©+{y}_{1}{y}_{2}=£¨1+{k}^{2}£©{x}_{1}{x}_{2}+9$=0£®
¼´$\frac{-{a}^{2}£¨{a}^{2}-9£©£¨1+{k}^{2}£©}{{a}^{2}{k}^{2}+£¨{a}^{2}-9£©}+9=0$£¬
½«ÆäÕûÀíΪ${k}^{2}=\frac{{a}^{4}-18{a}^{2}+8{1}^{2}}{-{a}^{4}+18{a}^{2}}=-1-\frac{81}{{a}^{4}-18{a}^{2}}$£®
¡ß$2\sqrt{3}£¼a£¼3\sqrt{2}$£¬¡à12¡Üa2£¼18£®
¡à${k}^{2}¡Ý\frac{1}{8}$£¬¼´k¡Ê$£¨-¡Þ£¬-\frac{{\sqrt{2}}}{4}£©¡È£¨\frac{{\sqrt{2}}}{4}£¬+¡Þ£©$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨺ÍÖ±ÏßÓëÍÖԲλÖùØϵµÄ×ÛºÏÔËÓ㬽âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØ½øÐеȼÛת»¯£¬ÊÇѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø