ÌâÄ¿ÄÚÈÝ
18£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-3£¬0£©¡¢F2£¨3£¬0£©£¬Ö±Ïßy=kxÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£®£¨1£©ÈôÈý½ÇÐÎAF1F2µÄÖܳ¤Îª$4\sqrt{3}+6$£¬ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Èô$2\sqrt{3}£¼a£¼3\sqrt{2}$£¬ÇÒÒÔABΪֱ¾¶µÄÔ²¹ýÍÖÔ²µÄÓÒ½¹µã£¬ÇóÖ±Ïßy=kxбÂÊkµÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨1£©ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{c=3}\\{2a+2c=4\sqrt{3}+6}\end{array}\right.$£¬Çó³öa¡¢cµÄÖµ£¬½áºÏÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\\{y=kx}\end{array}\right.$£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØϵµÃµ½A£¬BÁ½µãºá×ø±êµÄºÍÓë»ý£¬ÒÀÌâÒ⣬AF2¡ÍBF2£¬ÀûÓÃÏòÁ¿ÊýÁ¿»ýΪ0µÃµ½¹ØÓÚa£¬kµÄ¹Øϵʽ£¬ÔÚ½áºÏaµÄ·¶Î§µÃ´ð°¸£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{c=3}\\{2a+2c=4\sqrt{3}+6}\end{array}\right.$£¬µÃa=2$\sqrt{3}$£¬c=3£®
½áºÏa2=b2+c2£¬½âµÃa2=12£¬b2=3£®
ÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{3}=1$£»
£¨2£©ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\\{y=kx}\end{array}\right.$£¬µÃ£¨b2+a2k2£©x2-a2b2=0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
¡à${x}_{1}+{x}_{2}=0£¬{x}_{1}{x}_{2}=-\frac{{a}^{2}{b}^{2}}{{b}^{2}+{a}^{2}{k}^{2}}$£¬
ÒÀÌâÒ⣬AF2¡ÍBF2£¬
¡ß$\overrightarrow{{F}_{2}A}=£¨{x}_{1}-3£¬{y}_{1}£©$£¬$\overrightarrow{{F}_{2}B}=£¨{x}_{2}-3£¬{y}_{2}£©$£¬
¡à$\overrightarrow{{F}_{2}A}•\overrightarrow{{F}_{2}B}$=$£¨{x}_{1}-3£©£¨{x}_{2}-3£©+{y}_{1}{y}_{2}=£¨1+{k}^{2}£©{x}_{1}{x}_{2}+9$=0£®
¼´$\frac{-{a}^{2}£¨{a}^{2}-9£©£¨1+{k}^{2}£©}{{a}^{2}{k}^{2}+£¨{a}^{2}-9£©}+9=0$£¬
½«ÆäÕûÀíΪ${k}^{2}=\frac{{a}^{4}-18{a}^{2}+8{1}^{2}}{-{a}^{4}+18{a}^{2}}=-1-\frac{81}{{a}^{4}-18{a}^{2}}$£®
¡ß$2\sqrt{3}£¼a£¼3\sqrt{2}$£¬¡à12¡Üa2£¼18£®
¡à${k}^{2}¡Ý\frac{1}{8}$£¬¼´k¡Ê$£¨-¡Þ£¬-\frac{{\sqrt{2}}}{4}£©¡È£¨\frac{{\sqrt{2}}}{4}£¬+¡Þ£©$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨺ÍÖ±ÏßÓëÍÖԲλÖùØϵµÄ×ÛºÏÔËÓ㬽âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØ½øÐеȼÛת»¯£¬ÊÇѹÖáÌ⣮
A£® | f£¨x£©=x£¬g£¨x£©=£¨$\sqrt{x}$£©2 | B£® | f£¨x£©=$\sqrt{x}$•$\sqrt{x+1}$£¬g£¨x£©=$\sqrt{{x}^{2}+x}$ | ||
C£® | f£¨x£©=1£¬g£¨x£©=x0 | D£® | f£¨x£©=|x|£¬g£¨x£©=$\left\{\begin{array}{l}{x£¬x£¾0}\\{-x£¬x¡Ü0}\end{array}\right.$ |
Ðû´«Î¿ÎÊ | Ò幤 | ×Ü¼Æ | |
ÄÐÐÔÖ¾Ô¸Õß | 11 | 16 | 27 |
Å®ÐÔÖ¾Ô¸Õß | 15 | 8 | 23 |
×Ü¼Æ | 26 | 24 | 50 |
£¨2£©Èç¹û¡°Ðû´«Î¿ÎÊ¡±Óë¡°×öÒ幤¡±ÊÇÁ½¸ö·ÖÀà±äÁ¿£¬ÄÇôÄãÓжà´ó°ÑÎÕÈÏΪѡÔñ×öÐû´«Î¿ÎÊÓë×öÒ幤ÊÇÓëÐÔ±ðÓйØϵµÄ£¿
¸½£º2¡Á2ÁÐÁª±íËæ»ú±äÁ¿K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£®P£¨K2¡Ýk£©Óëk¶ÔÓ¦Öµ±í£º
²Î¿¼Êý¾Ý | P£¨K2¡Ýk£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A£® | f£¨-3£©=f£¨2£© | B£® | f£¨-3£©£¾f£¨2£© | C£® | f£¨-3£©£¼f£¨2£© | D£® | ²»ÄÜÈ·¶¨ |
A£® | [0£¬+¡Þ£© | B£® | £¨-1£¬+¡Þ£© | C£® | [-2£¬+¡Þ£© | D£® | £¨-3£¬+¡Þ£© |
A£® | 2 | B£® | 1 | C£® | $\frac{1}{2}$ | D£® | $\frac{1}{8}$ |