题目内容
【题目】在直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,曲线的极坐标方程为,曲线的极坐标方程为.
(1)求与的直角坐标方程;
(2)若与的交于点,与交于、两点,求的面积.
【答案】(1):;:(2)
【解析】
(1)由曲线的极坐标方程能求出曲线的普通方程,由曲线的极坐标方程能求出曲线的普通方程.
(2)由曲线的极坐标方程求出曲线的普通方程,联立与得,解得点坐标(1,4),从而点到的距离.设,.将代入,得,求出,由此能求出的面积.
解:(1)∵曲线的极坐标方程为,
∴根据题意,曲线的普通方程为.
∵曲线的极坐标方程为,
∴曲线的普通方程为,
即;
(2)∵曲线的极坐标方程为,
∴曲线的普通方程为,
联立与,得,
解得,
∴点的坐标,
点到的距离.
设,将代入,得,
则,,
,
∴.
【题目】中国人旅游有个特点:喜欢在旅游区购买当地的名优土特产,黄冈市有很多名优土特产,黄冈市的蕲春县就有闻名于世的“蕲春四宝”蕲竹、蕲艾、蕲蛇、蕲龟,由于医圣李时珍出生在蕲春县,很多人慕名而来,回家时顺带买点“蕲春四宝”,通过随机询问60名不同性别的游客在购买“蕲春四宝”时是否在来蕲春县之前就知道“蕲春四宝”,得到如下列联表:
男 | 女 | 总计 | |
事先知道“蕲春四宝” | 8 | n | q |
事先不知道“蕲春四宝” | m | 4 | 36 |
总计 | 40 | p | t |
附:
写出列联表中各字母代表的数字;
由以上列联表判断,能否在犯错误的概率不超过的前提下认为购买“蕲春四宝”和是否“事先知道蕲春四宝有关系”?
现从这60名游客中用分层抽样的方法抽取15名游客进行问卷调查,再从抽取的女游客中,随机选出2人给予小礼品,求有2名女游客是事先知道“蕲春四宝”的概率?
【题目】为了政府对过热的房地产市场进行调控决策,统计部门对城市人和农村人进行了买房的心理预期调研,用简单随机抽样的方法抽取110人进行统计,得到如下列联表:
买房 | 不买房 | 纠结 | |
城市人 | 5 | 15 | |
农村人 | 20 | 10 |
已知样本中城市人数与农村人数之比是3:8.
分别求样本中城市人中的不买房人数和农村人中的纠结人数;
用独立性检验的思想方法说明在这三种买房的心理预期中哪一种与城乡有关?
参考公式:.
k |
【题目】在暑假社会实践活动中,静静同学为了研究日最高气温对某家奶茶店的A品牌冷饮销量的影响,统计得到7月11日至15日该奶茶店A品牌冷饮的日销量y(杯)与当日最高气温x(℃)的对比表:
日期 | 7月11日 | 7月12日 | 7月13日 | 7月14日 | 7月15日 |
最高气温x(℃) | 31 | 33 | 32 | 34 | 35 |
销量y(杯) | 55 | 58 | 60 | 63 | 64 |
(1)由以上数据求出y关于x的线性回归方程, 若天气预报7月17日的最高气温为37℃,请预测当天该奶茶店A品牌冷饮的销量(取整数);
(2)从这5天中任选2天,求选出的2天最高气温都达到33℃以上(含33℃)的概率.参考公式及参考数据如下:
,