题目内容
(本小题满分14分)
已知曲线所围成的封闭图形的面积为,曲线的内切圆半径为.记为以曲线与坐标轴的交点为顶点的椭圆.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是过椭圆中心的任意弦,是线段的垂直平分线.是上异于椭圆中心的点.
(1)若(为坐标原点),当点在椭圆上运动时,求点的轨迹方程;
(2)若是与椭圆的交点,求的面积的最小值.
(Ⅰ)
(Ⅱ)(1)
(2)
解析:
(Ⅰ)由题意得又,解得,.
因此所求椭圆的标准方程为.
(Ⅱ)(1)假设所在的直线斜率存在且不为零,设所在直线方程为
,.
解方程组得,,
所以.
设,由题意知,
所以,即,
因为是的垂直平分线,所以直线的方程为,即,
因此,
又,所以,故.
又当或不存在时,上式仍然成立.
综上所述,的轨迹方程为.
(2)当存在且时,由(1)得,,
由解得,,
所以,,.
解法一:由于
,
当且仅当时等号成立,即时等号成立,
此时面积的最小值是.
当,.
当不存在时,.
综上所述,的面积的最小值为.
解法二:因为,
又,,
当且仅当时等号成立,即时等号成立,
此时面积的最小值是.
当,.
当不存在时,.
综上所述,的面积的最小值为.
练习册系列答案
相关题目