题目内容
【题目】在正方体ABCD-A1B1C1D1中,点M、N分别在AB1、BC1上,且AM=AB1,BN=BC1,则下列结论:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正确命题的个数是( )
A.1B.2C.3D.4
【答案】B
【解析】
由题意在四条棱A1A,B1B,C1C,D1D上分别取点G,F,E,H四点,使AGA1A,BFB1B,CEC1C,DHD1D,得到平面GFEH,则点M,N在与平面A1B1C1D1平行的平面GFEH中.利用线面垂直的性质判断①正确;利用平行公理判断②错误;利用面面平行的性质判断③正确;利用面面平行以及线线垂直的性质判断④错误.
在正方体ABCD﹣A1B1C1D1的四条棱A1A,B1B,C1C,D1D上分别取点G,F,E,H四点,
使AGA1A,BFB1B,CEC1C,DHD1D,连接GF,FE,EH,HG,
∵点M、N分别在AB1、BC1上,且AMAB1,BNBC1,
∴M在线段GF上,N点在线段FE上.且四边形GFEH为正方形,平面GFEH∥平面A1B1C1D1,
∵AA1⊥平面A1B1C1D1,∴AA1⊥平面GFEH,
∵MN平面GFEH,∴AA1⊥MN,故①正确;
∵A1C1∥GE,而GE与MN不平行,∴A1C1与MN不平行,故②错误;
∵平面GFEH∥平面A1B1C1D1,MN平面GFEH,∴MN∥平面A1B1C1D1,故③正确;
∵B1D1∥FH,FH平面GFEH,MN平面GFEH,且MN与FH不垂直,∴B1D1与MN不垂直,故④错误.
∴正确命题只有①③.
故选:B.
练习册系列答案
相关题目