题目内容
【题目】已知正方体的棱长为,其内有2个不同的小球,球与三棱锥的四个面都相切,球与三棱锥的三个面和球都相切,则球的体积等于______,球的表面积等于______.
【答案】
【解析】
由题意可知三棱锥是边长为的正四面体,则球是三棱锥的内切球,设其半径为,由,可知,设平面平面,且球和球均与平面相切于点,则球是正四面体的内切球,设其半径为,则,最后代入数据计算即可.
因为正方体的棱长为,
所以三棱锥是边长为的正四面体,的高为,
设底面的中心为,连接,则,,
则球是三棱锥的内切球,设其半径为,
则有
所以,
所以球的体积为,
又球与三棱锥的三个面和球都相切,
则设平面平面,且球和球均与平面相切于点,如下图所示,
则球是三棱锥的内切球,设其半径为,
故,
因此在正四面体中,,
所以球的表面积为,
故答案为:;.
练习册系列答案
相关题目
【题目】福利彩票“双色球”中红色球由编号为的个球组成.某彩民利用下面的随机数表选取组数作为个红色球的编号,选取方法是从随机数表(如下)第行的第列数字开始从左向右依次选取两个数字,则选出来的第个红色球的编号为( )
49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 17 34 91 64 |
57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 |
A.B.C.D.