题目内容
【题目】在平面直角坐标系中,已知椭圆的中心为坐标原点焦点在轴上,右顶点到右焦点的距离与它到右准线的距离之比为.
(1)求椭圆的标准方程;
(2)若是椭圆上关于轴对称的任意两点,设,连接交椭圆于另一点.求证:直线过定点并求出点的坐标;
(3)在(2)的条件下,过点的直线交椭圆于两点,求的取值范围.
【答案】(1);(2)证明详见解析,;(3).
【解析】
(1)根据题意列出关于的等式求解即可.
(2)先根据对称性,直线过的定点一定在轴上,再设直线的方程为,联立直线与椭圆的方程, 进而求得的方程,并代入,化简分析即可.
(3)先分析过点的直线斜率不存在时的值,再分析存在时,设直线的方程为,联立直线与椭圆的方程,得出韦达定理再代入求解出关于的解析式,再求解范围即可.
解:设椭圆的标准方程焦距为,
由题意得,
由,可得
则,
所以椭圆的标准方程为;
证明:根据对称性,直线过的定点一定在轴上,
由题意可知直线的斜率存在,
设直线的方程为,
联立,消去得到,
设点,
则.
所以,
所以的方程为,
令得,
将,代入上式并整理,
,
整理得,
所以,直线与轴相交于定点.
当过点的直线的斜率不存在时,直线的方程为,
此时,
当过点的直线斜率存在时,
设直线的方程为,且在椭圆上,
联立方程组,
消去,整理得,
则.
所以
所以,
所以,
由得,
综上可得,的取值范围是.
【题目】《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下:
卦名 | 符号 | 表示的二进制数 | 表示的十进制数 |
坤 | 000 | 0 | |
震 | 001 | 1 | |
坎 | 010 | 2 | |
兑 | 011 | 3 |
依此类推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( )
A. 18B. 17C. 16D. 15