题目内容
【题目】新冠疫情发生后,酒精使用量大增,某生产企业调整设备,全力生产与两种不同浓度的酒精,按照计划可知在一个月内,酒精日产量(单位:吨)与时间n(且)成等差数列,且,.又知酒精日产量所占比重与时间n成等比数列,酒精日产量所占比重与时间n的关系如下表():
酒精日产量所占比重 | …… | |||
时间n | 1 | 2 | 3 | …… |
(1)求,的通项公式;
(2)若,求前n天
【答案】(1),();(2)吨(且).
【解析】
(1)由等差、等比数列的定义和通项公式可求得;
(2)运用错位相减法可得答案.
(1)由,得,所以,所以.
因为,.所以().
(2)由题意知,第n天酒精的生产量为,
①,
②,
由①②得:,
所以,
综上,前n天酒精的总生产量吨(且).
练习册系列答案
相关题目
【题目】将某公司200天的日销售收入(单位:万元)统计如下表(1)所示,
日销售收入 | ||||||
频数 | 12 | 28 | 36 | 54 | 50 | 20 |
频率 |
表(1)
(1)完成上述频率分布表,并估计公司这200天的日均销售收入(同一组中的数据用该组所在区间的中点值代表);
(2)已知该公司2020年第一、二季度的日销售收入如下表(2)所示,第三季度的日销售收入及其频率可用表(1)中的数据近似代替,且在2020年,当公司日销售收入为时,员工的日绩效为100元,当公司日销售收入为时,员工的日绩效为200元,当公司日销售收入为时,员工的日绩效为300元.以频率估计概率.
①若在第三季度某员工的工作日中随机抽取2天,记该员工2天的绩效之和为,求的分布列以及数学期望;
②若每个员工每个季度的工作日为50天,估计2020年前三个季度每个员工获得的绩效的总额.
日销售收入 | ||||||
频率 | 0.2 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 |
表(2)