题目内容
【题目】如图,E是以AB为直径的半圆O上异于A、B的点,矩形ABCD所在的平面垂直于半圆O所在的平面,且AB=2AD=2.
(1)求证:;
(2)若异面直线AE和DC所成的角为,求平面DCE与平面AEB所成的锐二面角的余弦值.
【答案】(1)证明见解析;(2).
【解析】
(1) 由面面垂直的性质可证得.再线面垂直的判定定理和性质定理可得证;
(2)以点为坐标原点,所在的直线为轴,过点与平行的直线为轴,建立空间直角坐标系.由二面角的向量求解方法可求得平面DCE与平面AEB所成的锐二面角的余弦值.
(1) ∵平面垂直于圆所在的平面,
两平面的交线为平面,
∴垂直于圆所在的平面.又在圆所在的平面内,
∴.∵是直角,∴,
又,∴平面,
∴.
(2)如图, 以点为坐标原点,所在的直线为轴,
过点与平行的直线为轴,建立空间直角坐标系.
由异面直线和所成的角为,,
知,∴,
∴,由题设可知 ,,
∴,.
设平面的一个法向量为,
由,即
得,,取,得.
∴.又平面的一个法向量为,
∴.
平面与平面所成的锐二面角的余弦值.
【题目】腾飞中学学生积极参加科技创新大赛,在市级组织的大赛中屡创佳绩.为了组织学生参加下一届市级大赛,了解学生报名参加社会科学类比赛(以下称为A类比赛)和自然科学类比赛(以下称为B类比赛)的意向,校团委随机调查了60名男生和40名女生调查结果如下:60名男生中,15名不准备参加比赛,5名准备参加A类比赛和B类比赛,剩余的男生有准备参加A类比赛,准备参加B类比赛,40名女生中,10名不准备参加比赛,25名准备参加A类比赛,5名准备参加B类比赛.
(1)根据统计数据,完成如2×2列联表(A类比赛和B类比赛都参加的学生需重复统计):
A类比赛 | B类比赛 | 总计 | |
男生 | |||
女生 | |||
总计 |
(2)能否有99%的把握认为学生参加A类比赛或B类比赛与性别有关?
附:K2.
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【题目】新冠疫情发生后,酒精使用量大增,某生产企业调整设备,全力生产与两种不同浓度的酒精,按照计划可知在一个月内,酒精日产量(单位:吨)与时间n(且)成等差数列,且,.又知酒精日产量所占比重与时间n成等比数列,酒精日产量所占比重与时间n的关系如下表():
酒精日产量所占比重 | …… | |||
时间n | 1 | 2 | 3 | …… |
(1)求,的通项公式;
(2)若,求前n天