题目内容

【题目】在△ABC中,设内角A、B、C的对边分别为a、b、c,向量 =(cosA+ ,sinA),向量 =(﹣sinA,cosA),若| + |=2.
(1)求角A的大小;
(2)若b=4 ,且c= a,求△ABC的面积.

【答案】
(1)解:∵ + =(cosA+ ﹣sinA,cosA+sinA),

∴| + |2=(cosA+ ﹣sinA)2+(cosA+sinA)2

=2+2 (cosA﹣sinA)+(cosA﹣sinA)2+(cosA+sinA)2

=2+2 (cosA﹣sinA)+2

=4﹣4sin(A﹣ ),

∵| + |=2,

∴4sin(A﹣ )=0,

又∵0<A<π,

∴﹣ <A﹣

∴A﹣ =0,

∴A=


(2)解:∵由余弦定理,a2=b2+c2﹣2bccosA,又b=4 ,c= a,A=

得:a2=32+2a2﹣2×4 × a

即:a2﹣8 a+32=0,解得a=4

∴c=8,

∴SABC= bcsinA= sin =16


【解析】(1)先根据向量模的运算表示出| + |2 , 然后化简成y=Asin(wx+ρ)+b的形式,再根据正弦函数的性质和| + |=2可求出A的值.(2)先根据余弦定理求出a,c的值,再由三角形面积公式可得到最后答案.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网