题目内容
【题目】在△ABC中,设内角A、B、C的对边分别为a、b、c,向量 =(cosA+ ,sinA),向量 =(﹣sinA,cosA),若| + |=2.
(1)求角A的大小;
(2)若b=4 ,且c= a,求△ABC的面积.
【答案】
(1)解:∵ + =(cosA+ ﹣sinA,cosA+sinA),
∴| + |2=(cosA+ ﹣sinA)2+(cosA+sinA)2,
=2+2 (cosA﹣sinA)+(cosA﹣sinA)2+(cosA+sinA)2
=2+2 (cosA﹣sinA)+2
=4﹣4sin(A﹣ ),
∵| + |=2,
∴4sin(A﹣ )=0,
又∵0<A<π,
∴﹣ <A﹣ < ,
∴A﹣ =0,
∴A=
(2)解:∵由余弦定理,a2=b2+c2﹣2bccosA,又b=4 ,c= a,A= ,
得:a2=32+2a2﹣2×4 × a ,
即:a2﹣8 a+32=0,解得a=4 ,
∴c=8,
∴S△ABC= bcsinA= sin =16
【解析】(1)先根据向量模的运算表示出| + |2 , 然后化简成y=Asin(wx+ρ)+b的形式,再根据正弦函数的性质和| + |=2可求出A的值.(2)先根据余弦定理求出a,c的值,再由三角形面积公式可得到最后答案.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.
练习册系列答案
相关题目