题目内容
【题目】如图,在四棱锥PABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.
(1)求异面直线AP与BC所成角的余弦值;
(2)求证:PD⊥平面PBC;
(3)求直线AB与平面PBC所成角的正弦值.
【答案】(1)(2)见解析(3)
【解析】
(Ⅰ)由已知AD∥BC,从而∠DAP或其补角即为异面直线AP与BC所成的角,由此能求出异面直线AP与BC所成角的余弦值.
(Ⅱ)由AD⊥平面PDC,得AD⊥PD,由BC∥AD,得PD⊥BC,再由PD⊥PB,得到PD⊥平面PBC.
(Ⅲ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角,由PD⊥平面PBC,得到∠DFP为直线DF和平面PBC所成的角,由此能求出直线AB与平面PBC所成角的正弦值.
(1)如图,由已知AD∥BC,故∠DAP或其补角即为异面直线AP与BC所成的角.
因为AD⊥平面PDC,直线PD平面PDC,所以AD⊥PD.
在Rt△PDA中,由已知,得AP=,
故cos∠DAP==.
所以,异面直线AP与BC所成角的余弦值为.
(2)证明:由(1)知AD⊥PD.又因为BC∥AD,所以PD⊥BC.又PD⊥PB,PB∩BC=B,所以PD⊥平面PBC.
(3)解:过点D作DF∥AB,交BC于点F,连接PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.
因为PD⊥平面PBC,所以PF为DF在平面PBC上的射影,
所以∠DFP为直线DF和平面PBC所成的角.
由于AD∥BC,DF∥AB,故BF=AD=1.
由已知,得CF=BC-BF=2.
又AD⊥DC,所以BC⊥DC.
在Rt△DCF中,可得DF=2,
在Rt△DPF中,可得sin∠DFP=.
所以直线AB与平面PBC所成角的正弦值为.