题目内容
计算
[
+
+
+…+
]=______.
lim |
n→∞ |
1 |
1×3 |
1 |
2×4 |
1 |
3×5 |
1 |
n(n+2) |
∵2[
+
+…+
]
=1-
+
-
+…+
-
=1+
-
-
=
-
∴
+
+…+
=
-
∴
[
+
+…+
]=
[
-
]=
故答案为:
1 |
1×3 |
1 |
2×4 |
1 |
n(n+2) |
=1-
1 |
3 |
1 |
2 |
1 |
4 |
1 |
n |
1 |
n+2 |
=1+
1 |
2 |
1 |
n+1 |
1 |
n+2 |
3 |
2 |
2n+3 |
(n+1)(n+2) |
∴
1 |
1×3 |
1 |
2×4 |
1 |
n(n+2) |
3 |
4 |
2n+3 |
2(n+1)(n+2) |
∴
lim |
n→∞ |
1 |
1×3 |
1 |
2×4 |
1 |
n(n+2) |
lim |
n→∞ |
3 |
4 |
2n+3 |
2(n+1)(n+2) |
3 |
4 |
故答案为:
3 |
4 |
练习册系列答案
相关题目
计算
[1+
+(
)2+(
)3+…+(
)n-1]的结果是( )
lim |
n→∞ |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
A、
| ||
B、3 | ||
C、
| ||
D、2 |